functionally diverse
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 192)

H-INDEX

57
(FIVE YEARS 7)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jon Ezell ◽  
J.J. Pionke ◽  
Jeremy Gunnoe

Purpose This paper aims to contribute to an understanding of current accessibility efforts and practice in librarianship by providing a broad overview of the information about services, resources and facilities on academic library accessibility pages. By compiling and analyzing data from 85 libraries, this study seeks to facilitate comparisons between current and past accessibility practice and to provide perspective on how libraries communicate to users about accessibility efforts across libraries.Design/methodology/approach The authors conducted a content analysis of 85 library accessibility pages from a sample population of 98 institutions, consisting of all members institutions of four US academic library consortia. Pages were coded for content elements regarding services, facilities, collections, staffing, assistive technologies and general information. Webpage features, architecture and accessibility/functionality were also assessed.Findings Libraries have broadened and strengthened efforts to publicize/provide services and resources to functionally diverse users. Pages most commonly prioritize information about assistive technologies, services and facilities. Pages varied greatly in size, complexity and detail, but public institutions' pages were more prevalent and informative than their private counterparts. Libraries can work to foreground accessibility pages and increase transparency and evidence of currency to improve communication to their users.Originality/value This study provides a large-scale content analysis of library accessibility webpages. It allows for comparison of the features and information most commonly featured on these important online points of service.


Metabolites ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 76
Author(s):  
Fei Luo ◽  
Zongjun Yu ◽  
Qian Zhou ◽  
Ancheng Huang

Plants produce numerous structurally and functionally diverse signaling metabolites, yet only relatively small fractions of which have been discovered. Multi-omics has greatly expedited the discovery as evidenced by increasing recent works reporting new plant signaling molecules and relevant functions via integrated multi-omics techniques. The effective application of multi-omics tools is the key to uncovering unknown plant signaling molecules. This review covers the features of multi-omics in the context of plant signaling metabolite discovery, highlighting how multi-omics addresses relevant aspects of the challenges as follows: (a) unknown functions of known metabolites; (b) unknown metabolites with known functions; (c) unknown metabolites and unknown functions. Based on the problem-oriented overview of the theoretical and application aspects of multi-omics, current limitations and future development of multi-omics in discovering plant signaling metabolites are also discussed.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hao Chen ◽  
Haitao Chen ◽  
Xiaoxu Tian

PurposeSocial shopping platforms have flourished by using multiple social shopping features, yet little is known about how the combination of these features affects purchase intention, particularly in terms of the product itself. The purpose of the paper is to draw on the concept of social shopping feature richness, adopting a formative approach on the survey used, and endeavors to reveal the concept's impact on consumers' buying intention from a product perspective.Design/methodology/approachBuilding on mental accounting and signaling theories, a theoretical model is proposed and empirically evaluated with 356 samples collected using a questionnaire survey.FindingsThe results suggest that social shopping feature richness promotes consumers' consumption by providing information signals to satisfy acquisition utility and transaction utility. Specifically, social shopping feature richness enhances perceived product quality, while decreasing negative perceptions regarding price. Moreover, perceived product quality and perceived price significantly influence buying intention through the mechanism of perceived value.Originality/valueThe authors' study highlights the role of the combination of functionally diverse social shopping features on product sales for social shopping platforms.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Clara Martínez-Pérez ◽  
Chris Greening ◽  
Sean K. Bay ◽  
Rachael J. Lappan ◽  
Zihao Zhao ◽  
...  

AbstractThroughout coastal Antarctica, ice shelves separate oceanic waters from sunlight by hundreds of meters of ice. Historical studies have detected activity of nitrifying microorganisms in oceanic cavities below permanent ice shelves. However, little is known about the microbial composition and pathways that mediate these activities. In this study, we profiled the microbial communities beneath the Ross Ice Shelf using a multi-omics approach. Overall, beneath-shelf microorganisms are of comparable abundance and diversity, though distinct composition, relative to those in the open meso- and bathypelagic ocean. Production of new organic carbon is likely driven by aerobic lithoautotrophic archaea and bacteria that can use ammonium, nitrite, and sulfur compounds as electron donors. Also enriched were aerobic organoheterotrophic bacteria capable of degrading complex organic carbon substrates, likely derived from in situ fixed carbon and potentially refractory organic matter laterally advected by the below-shelf waters. Altogether, these findings uncover a taxonomically distinct microbial community potentially adapted to a highly oligotrophic marine environment and suggest that ocean cavity waters are primarily chemosynthetically-driven systems.


2022 ◽  
Author(s):  
Jennifer Mallon ◽  
Tyler Cyronak ◽  
Emily R. Hall ◽  
Anastazia T. Banaszak ◽  
Dan A. Exton ◽  
...  

2022 ◽  
Author(s):  
Zhaohong Liu ◽  
Yong Yang ◽  
Xinyu Jiang ◽  
Qingmin Song ◽  
Giuseppe Zanoni ◽  
...  

Abstract The first example of dearomative [4 + 3] cycloaddition between furans and vinyl-N-sulfonylhydrazones as vinylcarbene precursors is reported. The merger of silver catalysis and easily decomposable vinyl-N-triftosylhydrazones enabled the efficient synthesis of a variety of skeletally and functionally diverse oxa-bridged seven-membered bicyclic compounds with complete and predictable stereoselectivity. The combination of experimental studies and DFT calculations disclosed that the silver-catalyzed reaction proceeds via a concerted [4 + 3] cycloaddition mechanism, rather than the generally accepted cyclopropanation / Cope rearrangement pathway by rhodium catalysis.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jason C. Hyun ◽  
Jonathan M. Monk ◽  
Bernhard O. Palsson

Abstract Background With the exponential growth of publicly available genome sequences, pangenome analyses have provided increasingly complete pictures of genetic diversity for many microbial species. However, relatively few studies have scaled beyond single pangenomes to compare global genetic diversity both within and across different species. We present here several methods for “comparative pangenomics” that can be used to contextualize multi-pangenome scale genetic diversity with gene function for multiple species at multiple resolutions: pangenome shape, genes, sequence variants, and positions within variants. Results Applied to 12,676 genomes across 12 microbial pathogenic species, we observed several shared resolution-specific patterns of genetic diversity: First, pangenome openness is associated with species’ phylogenetic placement. Second, relationships between gene function and frequency are conserved across species, with core genomes enriched for metabolic and ribosomal genes and accessory genomes for trafficking, secretion, and defense-associated genes. Third, genes in core genomes with the highest sequence diversity are functionally diverse. Finally, certain protein domains are consistently mutation enriched across multiple species, especially among aminoacyl-tRNA synthetases where the extent of a domain’s mutation enrichment is strongly function-dependent. Conclusions These results illustrate the value of each resolution at uncovering distinct aspects in the relationship between genetic and functional diversity across multiple species. With the continued growth of the number of sequenced genomes, these methods will reveal additional universal patterns of genetic diversity at the pangenome scale.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Qamar Taban ◽  
Peerzada Tajamul Mumtaz ◽  
Khalid Z. Masoodi ◽  
Ehtishamul Haq ◽  
Syed Mudasir Ahmad

AbstractScavenger receptors belong to a superfamily of proteins that are structurally heterogeneous and encompass the miscellaneous group of transmembrane proteins and soluble secretory extracellular domain. They are functionally diverse as they are involved in various disorders and biological pathways and their major function in innate immunity and homeostasis. Numerous scavenger receptors have been discovered so far and are apportioned in various classes (A-L). Scavenger receptors are documented as pattern recognition receptors and known to act in coordination with other co-receptors such as Toll-like receptors in generating the immune responses against a repertoire of ligands such as microbial pathogens, non-self, intracellular and modified self-molecules through various diverse mechanisms like adhesion, endocytosis and phagocytosis etc. Unlike, most of the scavenger receptors discussed below have both membrane and soluble forms that participate in scavenging; the role of a potential scavenging receptor Angiotensin-Converting Enzyme-2 has also been discussed whereby only its soluble form might participate in preventing the pathogen entry and replication, unlike its membrane-bound form. This review majorly gives an insight on the functional aspect of scavenger receptors in host defence and describes their mode of action extensively in various immune pathways involved with each receptor type.


2021 ◽  
Author(s):  
Vishwas G. Chandrashekhar ◽  
Thirusangumurugan Senthamarai ◽  
Ravishankar G. Kadam ◽  
Ondřej Malina ◽  
Josef Kašlík ◽  
...  

AbstractThe hydrogenation of nitriles to amines represents an important and frequently used industrial process due to the broad applicability of the resulting products in chemistry and life sciences. Despite the existing portfolio of catalysts reported for the hydrogenation of nitriles, the development of iron-based heterogeneous catalysts for this process is still a challenge. Here, we show that the impregnation and pyrolysis of iron(II) acetate on commercial silica produces a reusable Fe/Fe–O@SiO2 catalyst with a well-defined structure comprising the fayalite phase at the Si–Fe interface and α-Fe nanoparticles, covered by an ultrathin amorphous iron(III) oxide layer, growing from the silica matrix. These Fe/Fe–O core–shell nanoparticles, in the presence of catalytic amounts of aluminium additives, promote the hydrogenation of all kinds of nitriles, including structurally challenging and functionally diverse aromatic, heterocyclic, aliphatic and fatty nitriles, to produce primary amines under scalable and industrially viable conditions.


2021 ◽  
Vol 20 (2) ◽  
pp. 247-265
Author(s):  
Nadia Tasnim Ahmed ◽  
Sadia Noor ◽  
Md Mustafizur Rahman ◽  
Md Abdul Mazid

Endophytes have gained particular interest in the search of potential pharmaceutical candidates for a long time due to their diversity, species richness and bioprospecting nature. They generally produce the essential metabolites for their expansion inside the plant which is involved in various biotransformation processes of utilizing host nutrients and cell components to continue microbial growth, sustenance, and reproduction. In above processes, they produce a huge amount of both structurally and functionally diverse secondary metabolites for maintaining an effective symbiosis with hosts. These compounds are proven to have significant bioactive properties like antibacterial, antifungal, antiviral, anti-inflammatory, antioxidants, antitumor activities. Despite the proven significance, a little is exploited so far about endophytes. Particularly marine fungal endophytes which are the centre of attention in this review have gained much less importance. Due to unique environmental feature, fungal endophytes derived from marine environment offer vast diversity in different bioactive secondary metabolites. This review has focused on algicolous endophytes and bioactive secondary metabolites discovered during the last two decades. Particular importance has been given to cytotoxic and antimicrobial metabolites. Due to intensive studies during last several years, an extensive number of publications are now available on cytotoxic compounds derived from endophytic fungi of marine algicolous and spongicolous origin that have been summarized in this review. Dhaka Univ. J. Pharm. Sci. 20(2): 247-265, 2021 (December)


Sign in / Sign up

Export Citation Format

Share Document