scholarly journals Non-Monochromatic and Conflict-Free Colorings on Tree Spaces and Planar Network Spaces

Algorithmica ◽  
2019 ◽  
Vol 82 (5) ◽  
pp. 1081-1100
Author(s):  
Boris Aronov ◽  
Mark de Berg ◽  
Aleksandar Markovic ◽  
Gerhard Woeginger
Keyword(s):  

Abstract It is well known that any set of n intervals in $$\mathbb {R} ^1$$R1 admits a non-monochromatic coloring with two colors and a conflict-free coloring with three colors. We investigate generalizations of this result to colorings of objects in more complex 1-dimensional spaces, namely so-called tree spaces and planar network spaces.

2015 ◽  
Vol 434 ◽  
pp. 220-225 ◽  
Author(s):  
Darlan A. Moreira ◽  
Liacir dos Santos Lucena ◽  
Gilberto Corso
Keyword(s):  

2010 ◽  
Vol 20 (6) ◽  
pp. 2040-2085 ◽  
Author(s):  
Charles Bordenave ◽  
Giovanni Luca Torrisi

1990 ◽  
Vol 26 (8) ◽  
pp. 520 ◽  
Author(s):  
H. Obara ◽  
S. Okamoto ◽  
H. Uematsu ◽  
H. Matsunaga

2016 ◽  
Vol 44 (2) ◽  
pp. 256-271 ◽  
Author(s):  
Marc Barthelemy

The street network is an important aspect of cities and contains crucial information about their organization and evolution. Characterizing and comparing various street networks could then be helpful for a better understanding of the mechanisms governing the formation and evolution of these systems. Their characterization is however not easy: there are no simple tools to classify planar networks and most of the measures developed for complex networks are not useful when space is relevant. Here, we describe recent efforts in this direction and new methods adapted to spatial networks. We will first discuss measures based on the structure of shortest paths, among which the betweenness centrality. In particular for time-evolving road networks, we will show that the spatial distribution of the betweenness centrality is able to reveal the impact of important structural transformations. Shortest paths are however not the only relevant ones. In particular, they can be very different from those with the smallest number of turns—the simplest paths. The statistical comparison of the lengths of the shortest and simplest paths provides a nontrivial and nonlocal information about the spatial organization of planar graphs. We define the simplicity index as the average ratio of these lengths and the simplicity profile characterizes the simplicity at different scales. Measuring these quantities on artificial (roads, highways, railways) and natural networks (leaves, insect wings) show that there are fundamental differences—probably related to their different function—in the organization of urban and biological systems: there is a clear hierarchy of the lengths of straight lines in biological cases, but they are randomly distributed in urban systems. The paths are however not enough to fully characterize the spatial pattern of planar networks such as streets and roads. Another promising direction is to analyze the statistics of blocks of the planar network. More precisely, we can use the conditional probability distribution of the shape factor of blocks with a given area, and define what could constitute the fingerprint of a city. These fingerprints can then serve as a basis for a classification of cities based on their street patterns. This method applied on more than 130 cities in the world leads to four broad families of cities characterized by different abundances of blocks of a certain area and shape. This classification will be helpful for identifying dominant mechanisms governing the formation and evolution of street patterns.


2021 ◽  
Author(s):  
Roberta B. Nowak ◽  
Haleh Alimohamadi ◽  
Kersi Pestonjamasp ◽  
Padmini Rangamani ◽  
Velia M. Fowler

AbstractRed blood cell (RBC) shape and deformability are supported by a planar network of short actin filament (F-actin) nodes interconnected by long spectrin molecules at the inner surface of the plasma membrane. Spectrin-F-actin network structure underlies quantitative modelling of forces controlling RBC shape, membrane curvature and deformation, yet the nanoscale organization of F-actin nodes in the network in situ is not understood. Here, we examined F-actin distribution in RBCs using fluorescent-phalloidin labeling of F-actin imaged by multiple microscopy modalities. Total internal reflection fluorescence (TIRF) and Zeiss Airyscan confocal microscopy demonstrate that F-actin is concentrated in multiple brightly stained F-actin foci ∼200-300 nm apart interspersed with dimmer F-actin staining regions. Live cell imaging reveals dynamic lateral movements, appearance and disappearance of F-actin foci. Single molecule STORM imaging and computational cluster analysis of experimental and synthetic data sets indicate that individual filaments are non-randomly distributed, with the majority as multiple filaments, and the remainder sparsely distributed as single filaments. These data indicate that F-actin nodes are non-uniformly distributed in the spectrin-F-actin network and necessitate reconsideration of current models of forces accounting for RBC shape and membrane deformability, predicated upon uniform distribution of F-actin nodes and associated proteins across the micron-scale RBC membrane.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Rachel Karpman

International audience A <i>parametrization</i> of a positroid variety $\Pi$ of dimension $d$ is a regular map $(\mathbb{C}^{\times})^{d} \rightarrow \Pi$ which is birational onto a dense subset of $\Pi$. There are several remarkable combinatorial constructions which yield parametrizations of positroid varieties. We investigate the relationship between two families of such parametrizations, and prove they are essentially the same. Our first family is defined in terms of Postnikov’s <i>boundary measurement map</i>, and the domain of each parametrization is the space of edge weights of a planar network. We focus on a special class of planar networks called <i>bridge graphs</i>, which have applications to particle physics. Our second family arises from Marsh and Rietsch’s parametrizations of Deodhar components of the flag variety, which are indexed by certain subexpressions of reduced words. Projecting to the Grassmannian gives a family of parametrizations for each positroid variety. We show that each Deodhar parametrization for a positroid variety corresponds to a bridge graph, while each parametrization from a bridge graph agrees with some projected Deodhar parametrization. Soit $\Pi$ une variété positroïde. Nous appellerons <i>paramétrisation</i> toute application régulière $(\mathbb{C}^{\times})^{d} \rightarrow \Pi$ qui est un isomorphisme birégulier sur un sous-ensemble dense de $\Pi$. On sait que plusieurs constructions combinatoires donnent des paramétrisations intéressantes. Le but du présent article est d’investiguer deux familles de telles paramétrisations et de montrer, essentiellement, qu’elles coïncident. La première famille trouve son origine dans la <i>fonction de mesure des bords</i> de Postnikov. Le domaine de chaque paramétrisation est en ce cas-ci l’ensemble de poids des arêtes d’un réseau planaire pondéré. Nous nous concentrons sur une classe particulière de réseaux planaires, les <i>graphes de ponts</i>, ayant des applications à la physique subatomique. La deuxième famille provient des paramétrisations de Marsh et de Rietsch des composantes de Deodhar (indexées par certaines sous-expressions de mots réduits de permutations) de la variété de drapeaux. On obtient alors des paramétrisations de cellules de positroïdes en appliquant la projection à la grassmannienne. Nous montrons que chaque paramétrisation de Deodhar correspond à un graphe de ponts; d’autre part, chaque paramétrisation provenant d’un graphe de ponts s’accorde avec quelque paramétrisation de Deodhar.


Sign in / Sign up

Export Citation Format

Share Document