A higher order plate theory for dynamic stability analysis of delaminated composite plates

2000 ◽  
Vol 26 (3) ◽  
pp. 302-308 ◽  
Author(s):  
A. Chattopadhyay ◽  
A. G. Radu ◽  
D. Dragomir-Daescu
2002 ◽  
Vol 02 (02) ◽  
pp. 163-184 ◽  
Author(s):  
A. CHAKRABARTI ◽  
A. H. SHEIKH

A triangular element based on Reddy's higher order shear deformation theory is developed for free vibration analysis of composite plates. In the Reddy's plate theory, the transverse shear stress varies in a parabolic manner across the plate thickness and vanishes at the top and bottom surfaces of the plate. Moreover, it does not involve any additional unknowns. Thus the plate theory is quite simple and elegant. Unfortunately, such an attractive plate theory cannot be exploited as expected in finite element analysis, primarily due to the difficulties in satisfying the inter-element continuity requirement. This has inspired us to develop the present element, which has three corner nodes and three mid-side nodes with the same number of degrees of freedom. To demonstrate the performance of the element, numerical examples of isotropic and composite plates under different situations are solved. The results are compared with the analytical solutions and other published results, which show the accuracy and range of applicability of the proposed element in the problem of vibration analysis.


2011 ◽  
Vol 11 (02) ◽  
pp. 297-311 ◽  
Author(s):  
S. PRADYUMNA ◽  
ABHISHEK GUPTA

In this paper, the dynamic stability characteristics of laminated composite plates with piezoelectric layers subjected to periodic in-plane load are studied. The finite element method is employed using a modified first-order shear deformation plate theory (MFSDT). The formulation includes the effects of transverse shear, in-plane, and rotary inertia. The boundaries of dynamic instability regions are obtained using Bolotin's approach. The structural system is considered to be undamped. The correctness of the formulation is established by comparing the authors' results with those available in the published literature. The effects of control voltage, static buckling load parameter, number of stacking layers, and thickness of plate on the principal and second instability regions are investigated for cross-ply laminated composite plate.


2015 ◽  
Vol 22 (11) ◽  
pp. 897-907 ◽  
Author(s):  
H. D. Chalak ◽  
Anupam Chakrabarti ◽  
Abdul Hamid Sheikh ◽  
Mohd. Ashraf Iqbal

Sign in / Sign up

Export Citation Format

Share Document