load parameter
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 38)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 5 (3 (113)) ◽  
pp. 37-45
Author(s):  
Borys Bodnar ◽  
Oleksandr Ochkasov ◽  
Mykhailo Ochkasov

The widespread introduction of information technologies in the systems that manage technical fleets, the use of maintenance and repair systems based on risk assessment, is based on the calculation of a large enough number of indicators. Modern locomotives are equipped with systems for monitoring and diagnosing technical condition. Combining these systems with the Internet of Things and Big Data technologies provides an opportunity to use completely new approaches to fleet management. At the initial stage of the construction of such systems, it is necessary to devise criteria that make it possible to automatically determine the technical condition of a locomotive and its components in order to identify the locomotive in the total fleet that requires maintenance or repair. A procedure has been proposed for calculating the technical condition index of locomotives and their components based on data from monitoring systems. The procedure is based on the formation of latent diagnostic parameters employing the principal component method and on the subsequent calculation of the weight coefficients of these parameters applying the method of hierarchy analysis. The special feature of the proposed procedure is that when calculating the index, those latent diagnostic parameters are used that are derived from the group of control parameters whose weight coefficients are computed using the method of hierarchy analysis without involving experts. This paper reports the results from calculating the informativeness of the diagnostic parameters of load, loss, input, as well as their weight coefficients. The highest information content, from 0.5 to 0.85, is demonstrated by the load parameter; the smallest (0.05‒0.26) ‒ the input parameter. The average value and the dependences of changes in the technical condition index of a hydraulic transmission during the tests have been determined. Analysis of the technical condition index makes it possible to assess the transmission's response to changes in test modes, the dynamics of changes in losses


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6507
Author(s):  
Maher G. M. Abdolrasol ◽  
Mahammad Abdul Hannan ◽  
S. M. Suhail Hussain ◽  
Taha Selim Ustun ◽  
Mahidur R. Sarker ◽  
...  

This study uses an artificial neural network (ANN) as an intelligent controller for the management and scheduling of a number of microgrids (MGs) in virtual power plants (VPP). Two ANN-based scheduling control approaches are presented: the ANN-based backtracking search algorithm (ANN-BBSA) and ANN-based binary practical swarm optimization (ANN-BPSO) algorithm. Both algorithms provide the optimal schedule for every distribution generation (DG) to limit fuel consumption, reduce CO2 emission, and increase the system efficiency towards smart and economic VPP operation as well as grid decarbonization. Different test scenarios are executed to evaluate the controllers’ robustness and performance under changing system conditions. The test cases are different load curves to evaluate the ANN’s performance on untrained data. The untrained and trained load models used are real-load parameter data recorders in northern parts of Malaysia. The test results are analyzed to investigate the performance of these controllers under varying power system conditions. Additionally, a comparative study is performed to compare their performances with other solutions available in the literature based on several parameters. Results show the superiority of the ANN-based controllers in terms of cost reduction and efficiency.


2021 ◽  
Vol 10 (19) ◽  
pp. 4396
Author(s):  
Ines Herraez ◽  
Leyre Bento ◽  
Jaume Daumal ◽  
Alessandra Repetto ◽  
Raquel Del Campo ◽  
...  

Hodgkin lymphoma (HL) is a hematological malignancy with an excellent prognosis. However, we still need to identify those patients that could experience failed standard frontline chemotherapy. Tumor burden evaluation and standard decisions are based on Ann Arbor (AA) staging, but this approach may be insufficient in predicting outcomes. We aim to study new ways to assess tumor burden through volume-based PET parameters to improve the risk assessment of HL patients. We retrospectively analyzed 101 patients with HL from two hospitals in the Balearic Islands between 2011 and 2018. Higher metabolic tumor volume (MTV) and total lesion glycolysis (TLG) were significantly associated with a higher incidence of III-IV AA stages, B-symptoms, hypoalbuminemia, lymphopenia, and higher IPS. Standardized uptake value (SUVmax) was significantly related to AA stage and hypoalbuminemia. We found that TLG or the combination of SUVmax, TLG, and MTV significantly improved the risk assessment when compared to AA staging. We conclude that TLG is the best single PET/CT-related tumor-load parameter that significantly improves HL risk assessment when compared to AA staging. If confirmed in a larger and validated sample, this information could be used to modify standard frontline therapy and justifies the inclusion of TLG inside an HL prognostic score.


Author(s):  
Suganyadevi Sarangan ◽  
BN Singh

In this present work, non-polynomial zigzag theories (algebraic zigzag theory (AZT), exponential zigzag theory (EZT), hyperbolic zigzag theory (HZT), inverse hyperbolic zigzag theory (IZT), logarithmic zigzag theory (LZT) and trigonometric zigzag theory (TZT)) are performed for buckling response of laminated composite and sandwich plates. The present models assume parabolic variation of out – plane stresses through the depth of the plate and also accomplish the zero transverse shear stresses over the surface of the plate. Thus a need of shear correction factor is obviated. The present zigzag models able to meet the transverse shear stress continuity and zigzag form of in-plane displacement continuity at the plate interfaces. An efficient eight noded C° continuous isoparametric serendipity element is established and employed to examine the buckling analysis. Like FSDT, the considered mathematical model possesses similar number of variables and which decides the present models computationally more effective. Several numerical examples are carried out to study the effects of span to thickness ratio, ply orientation, lay-up number, modular ratio, loading condition and boundary condition on the buckling response. To ensure the capability of the proposed models, higher modes of buckling are obtained for laminated plates and sandwich plates. Further, the efficiency and superiority of the proposed models is ascertained by comparing it with 3 D elasticity solution and also with various existing shear deformation theories in the literature. Most remarkably, the present models are accurately estimates the buckling load parameter and they are insensitive of shear-locking.


Author(s):  
Andriy Maylo ◽  
Georgiy Pisarenko

At this paper was established result of the correlations characteristics of structural parameters of low-carbon steels during periodic loading under elastic deformations. According to the results of the research, the kinetic characteristics of the influence of the load parameter on the distribution of deformation defects of the surface layer of structural materials under elastic deformations are obtained. The regularities of the influence of elastic deformations on the distribution of discrete surface properties are revealed. Linear dependences of the parameter of distribution of discrete relief properties of the deformed surface on loading are revealed. The regularities of the influence of elastic deformations on the distribution of discrete surface properties are revealed. It is established that regardless of the type of load, the surface density of deformation defects of scattered fracture accumulates in the mother to a certain state of damage, which is characterized by the current state of density of elements of deformation defects.


2021 ◽  
Vol 6 (01) ◽  
pp. 173-192
Author(s):  
Q. Penloup ◽  
K. Roncin ◽  
Y. Parlier

A Design of Experiment method was applied combined with a performance prediction program to assess the influence of four design parameters on the propulsive capacity of kites used as auxiliary propulsion for merchant vessels. Those parameters are the lift coefficient, the lift to drag ratio or drag angle, the maximal load bearable by the kite and the ratio of the tether length on the square root of the kite area. These parameters are independent from the kite area and, therefore, they could be used with various kite ranges and types. The maximum wing load parameter is the one that shows the most influence on the propulsive force. Over 50% of the gains obtained through this study are directly attributable to it. Then the ratio of the tether length on the square root of the kite area comes as the second greatest influence factor for true wind angles above 70°. While the drag angle is more influential for the narrower angles. In fact, the most substantial gains are made upwind.


Author(s):  
Dániel Csala ◽  
Bence Márk Kovács ◽  
Péter Bali ◽  
Gábor Reha ◽  
Gergely Pánics

Abstract Objective The aim of the present study was to analyse the relationships between creatine kinase (CK) concentration, an indirect marker of muscle damage, and global positioning system (GPS)-derived metrics of a continuous two-week-long preseason training period in elite football. Design Twenty-one elite male professional soccer players were assessed during a 14-day preseason preparatory period. CK concentrations were determined each morning, and a GPS system was used to quantify the external load. A generalized estimating equation (GEE) model was established to determine the extent to which the external load parameter explained post-training CK levels. Results The GEE model found that higher numbers of decelerations (χ 2 = 7.83, P = 0.005) were most strongly associated with the post-training CK level. Decelerations and accelerations accounted for 62% and 11% of the post-training CK level, respectively, and considerable interindividual variability existed in the data. Conclusion The use of GPS to predict muscle damage could be of use to coaches and practitioners in prescribing recovery practices. Based on GPS data, more individualized strategies could be devised and could potentially result in better subsequent performance.


Author(s):  
Dabing xue ◽  
Zhiqiang Chao ◽  
Xixia Liu ◽  
Huaying Li ◽  
Shousong Han ◽  
...  

To reduce the effect of nonlinear factors and improve the tracking accuracy of the control system, a controller based on feedback linearization sliding mode control (FLSMC) method is proposed. This paper takes a variable displacement pump driven by a constant speed motor as the research object to verify the effectiveness of the designed controller. First, a high-order nonlinear model of the variable pump displacement control mechanism is established. Meanwhile, the load characteristic of the control cylinder is obtained by analyzing the swashplate control moment. Then the author uses the feedback linearization method to linearize the system model and designs a sliding mode controller to eliminate the impact of load parameter changes. Finally, the proposed FLSMC controller is used in simulation and experiment, and the PID controller is used as a comparison. Results show that the FLSMC controller can effectively improve the robustness of the pump control system.


Author(s):  
Can Gonenli ◽  
Hasan Ozturk ◽  
Oguzhan Das

In this study, the effect of crack on free vibration of a large deflected cantilever plate, which forms the case of a pre-stressed curved plate, is investigated. A distributed load is applied at the free edge of a thin cantilever plate. Then, the loading edge of the deflected plate is fixed to obtain a pre-stressed curved plate. The large deflection equation provides the non - linear deflection curve of the large deflected flexible plate. The thin curved plate is modeled by using the finite element method with a four-node quadrilateral element. Three different aspect ratios are used to examine the effect of crack. The effect of crack and its location on the natural frequency parameter is given in tables and graphs. Also, the natural frequency parameters of the present model are compared with the finite element software results to verify the reliability and validity of the present model. This study shows that the different mode shapes are occurred due to the change of load parameter, and these different mode shapes cause a change in the effect of crack.


Sign in / Sign up

Export Citation Format

Share Document