Multistage scenario-based interval-stochastic programming for planning water resources allocation

2008 ◽  
Vol 23 (6) ◽  
pp. 781-792 ◽  
Author(s):  
Y. P. Li ◽  
G. H. Huang ◽  
X. Chen
2013 ◽  
Vol 16 (1) ◽  
pp. 144-164 ◽  
Author(s):  
Y. L. Xie ◽  
G. H. Huang

In order to deal with the risk of low system stability and unbalanced allocation during water resources management under uncertainties, a risk-averse inexact two-stage stochastic programming model is developed for supporting regional water resources management. Methods of interval-parameter programming and conditional value-at-risk model are introduced into a two-stage stochastic programming framework, thus the developed model can tackle uncertainties described in terms of interval values and probability distributions. In addition, the risk-aversion method was incorporated into the objective function of the water allocation model to reflect the preference of decision makers, such that the trade-off between system economy and extreme expected loss under different water inflows could be analyzed. The proposed model was applied to handle a water resources allocation problem. Several scenarios corresponding to different river inflows and risk levels were examined. The results demonstrated that the model could effectively communicate the interval-format and random uncertainties, and risk aversion into optimization process, and generate inexact solutions that contain a spectrum of water resources allocation options. They could be helpful for seeking cost-effective management strategies under uncertainties. Moreover, it could reflect the decision maker's attitude toward risk aversion, and generate potential options for decision analysis in different system-reliability levels.


2015 ◽  
Vol 29 (7) ◽  
pp. 2303-2321 ◽  
Author(s):  
Hojjat Mianabadi ◽  
Erik Mostert ◽  
Saket Pande ◽  
Nick van de Giesen

2012 ◽  
Vol 212-213 ◽  
pp. 536-542
Author(s):  
Qiong Su ◽  
Shi Hua He

Based on complex adaptive system theory, the characteristics of water resources allocation system of river basin are analyzed. Evolutionary mechanisms and process of complex adaptive water resources allocation system in Dianchi basin are researched, and also characteristics of "learning". A complex adaptive system model of water-resource allocation is established during analyzing the influence factors and the reaction rules of water consumer agents and water provider agents. And based on this model, water resources in Dianchi basin is allocated only under Dianchi water provider and Zhangjiu river Yunlong reservoir water provider by using the platform of matlab. Finally, corresponding calculation results and conclusions are concluded.


Sign in / Sign up

Export Citation Format

Share Document