An Upper Bound for the Cardinality of an s -Distance Set in Euclidean Space

COMBINATORICA ◽  
2003 ◽  
Vol 23 (4) ◽  
pp. 535-557 ◽  
Author(s):  
Etsuko Bannai ◽  
Kazuki Kawasaki ◽  
Yusuke Nitamizu ◽  
Teppei Sato
Author(s):  
Oscar Palmas ◽  
Francisco J. Palomo ◽  
Alfonso Romero

By means of several counterexamples, the impossibility to obtain an analogue of the Chen lower estimation for the total mean curvature of any compact submanifold in Euclidean space for the case of compact space-like submanifolds in Lorentz–Minkowski spacetime is shown. However, a lower estimation for the total mean curvature of a four-dimensional compact space-like submanifold that factors through the light cone of six-dimensional Lorentz–Minkowski spacetime is proved by using a technique completely different from Chen's original one. Moreover, the equality characterizes the totally umbilical four-dimensional round spheres in Lorentz–Minkowski spacetime. Finally, three applications are given. Among them, an extrinsic upper bound for the first non-trivial eigenvalue of the Laplacian of the induced metric on a four-dimensional compact space-like submanifold that factors through the light cone is proved.


2014 ◽  
Vol 2 ◽  
Author(s):  
DAVID DE LAAT ◽  
FERNANDO MÁRIO DE OLIVEIRA FILHO ◽  
FRANK VALLENTIN

AbstractWe give theorems that can be used to upper bound the densities of packings of different spherical caps in the unit sphere and of translates of different convex bodies in Euclidean space. These theorems extend the linear programming bounds for packings of spherical caps and of convex bodies through the use of semidefinite programming. We perform explicit computations, obtaining new bounds for packings of spherical caps of two different sizes and for binary sphere packings. We also slightly improve the bounds for the classical problem of packing identical spheres.


2017 ◽  
Vol 97 (2) ◽  
pp. 308-312
Author(s):  
M. G. MAHMOUDI

For every rotation $\unicode[STIX]{x1D70C}$ of the Euclidean space $\mathbb{R}^{n}$ ($n\geq 3$), we find an upper bound for the number $r$ such that $\unicode[STIX]{x1D70C}$ is a product of $r$ rotations by an angle $\unicode[STIX]{x1D6FC}$ ($0<\unicode[STIX]{x1D6FC}\leq \unicode[STIX]{x1D70B}$). We also find an upper bound for the number $r$ such that $\unicode[STIX]{x1D70C}$ can be written as a product of $r$ full rotations by an angle $\unicode[STIX]{x1D6FC}$.


10.37236/8565 ◽  
2020 ◽  
Vol 27 (1) ◽  
Author(s):  
Ferenc Szöllősi ◽  
Patric R.J. Östergård

A finite set of vectors $\mathcal{X}$ in the $d$-dimensional Euclidean space $\mathbb{R}^d$ is called an $s$-distance set if the set of mutual distances between distinct elements of $\mathcal{X}$ has cardinality exactly $s$. In this paper we present a combined approach of isomorph-free exhaustive generation of graphs and Gröbner basis computation to classify the largest $3$-distance sets in $\mathbb{R}^4$, the largest $4$-distance sets in $\mathbb{R}^3$, and the largest $6$-distance sets in $\mathbb{R}^2$. We also construct new examples of large $s$-distance sets in $\mathbb{R}^d$ for $d\leq 8$ and $s\leq 6$, and independently verify several earlier results from the literature.


10.37236/1533 ◽  
2000 ◽  
Vol 7 (1) ◽  
Author(s):  
D. De Caen

A construction is given of ${{2}\over {9}} (d+1)^2$ equiangular lines in Euclidean $d$-space, when $d = 3 \cdot 2^{2t-1}-1$ with $t$ any positive integer. This compares with the well known "absolute" upper bound of ${{1}\over {2}} d(d+1)$ lines in any equiangular set; it is the first known constructive lower bound of order $d^2$ .


COMBINATORICA ◽  
1981 ◽  
Vol 1 (2) ◽  
pp. 99-102 ◽  
Author(s):  
Eiichi Bannai ◽  
Etsuko Bannai

COMBINATORICA ◽  
1983 ◽  
Vol 3 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Eiichi Bannai ◽  
Etsuko Bannai ◽  
Dennis Stanton

10.37236/9891 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Zhiqiang Xu ◽  
Zili Xu ◽  
Wei-Hsuan Yu

A finite subset $X$ on the unit sphere $\mathbb{S}^d$ is called an $s$-distance set with strength $t$ if its angle set $A(X):=\{\langle \mathbf{x},\mathbf{y}\rangle : \mathbf{x},\mathbf{y}\in X, \mathbf{x}\neq\mathbf{y} \}$ has size $s$, and $X$ is a spherical $t$-design but not a spherical $(t+1)$-design. In this paper, we consider to estimate the maximum size of such antipodal set $X$ for small $s$. Motivated by the method developed by Nozaki and Suda, for each even integer $s\in[\frac{t+5}{2}, t+1]$ with $t\geq 3$, we improve the best known upper bound of Delsarte, Goethals and Seidel. We next focus on two special cases: $s=3,\ t=3$ and $s=4,\ t=5$. Estimating the size of $X$ for these two cases is equivalent to estimating the size of real equiangular tight frames (ETFs) and Levenstein-equality packings, respectively. We improve the previous estimate on the size of real ETFs and Levenstein-equality packings. This in turn gives an upper bound on $|X|$ when $s=3,\ t=3$ and $s=4,\ t=5$, respectively.


1982 ◽  
Vol 5 (4) ◽  
pp. 707-714 ◽  
Author(s):  
Glyn Harman

GivenNpoints on a unit sphere ink+1dimensional Euclidean space, we obtain an upper bound for the sum of all the distances they determine which improves upon earlier work by K. B. Stolarsky whenkis even. We use his method, but derive a variant of W. M. Schmidt's results for the discrepancy of spherical caps which is more suited to the present application.


Sign in / Sign up

Export Citation Format

Share Document