Multiobjective fuzzy linear programming for sustainable irrigation planning: an Indian case study

2003 ◽  
Vol 7 (6) ◽  
pp. 412-418 ◽  
Author(s):  
K. Srinivasa Raju ◽  
L. Duckstein
2013 ◽  
Vol 40 (7) ◽  
pp. 663-673 ◽  
Author(s):  
A.B. Mirajkar ◽  
P.L. Patel

Multi-objective fuzzy linear programming (MOFLP) approach is applied with four conflicting objectives, viz maximization of net benefits, employment generation, minimization of cost of cultivation and maximization of revenue generation from municipal and industrial supplies (M and I), on a water resources project (Ukai), Gujarat, India. The results from the model are reported for the most critical year (90% exceedance probability), critical year (85% exceedance probability), normal year (75% exceedance probability), and wet year (60% exceedance probability) inflow conditions. The degree of satisfaction of the proposed MOFLP model, considering all objectives together, for wet year, normal year, critical year and most critical year are found to be 0.527, 0.515, 0.50, and 0.46 respectively; and corresponding net irrigation benefits for different inflow conditions are computed as 10 611.91 Million Rs, 10 476.67 Million Rs, 8 311.0044 Million Rs, and 6 900.051 Million Rs, respectively. The proposed MOFLP model indicated that probable inflow corresponding to 75% dependability level is marginally sufficient to meet the requirement of the study area, and water availability becomes deficit in the command area for 85% dependability inflow condition. The optimized crop areas from the model, complying with the requirement of existing flood rules, and satisfying relevant conflicting objectives would help the decision makers in sustainable management of water resources in Ukai command area.


2020 ◽  
Vol 3 (1) ◽  
pp. 373-389 ◽  
Author(s):  
Jyotiba B. Gurav ◽  
D. G. Regulwar

Abstract The objective of the present work is to determine an optimal cropping pattern under uncertainty, which maximizes four objectives simultaneously, including net benefits (NBF), crop production (CPD), employment generation (EGN) and manure utilization (MUT). Except the objective of maximizing the NBF, the other objectives are related to sustainability. To deal with uncertainty, a multi-objective fuzzy linear programming (MOFLP) model has developed along with fuzziness in decision parameters (objective function coefficient, cost coefficients, technological coefficients and resources) and decision variables (area to be irrigated under each crop in each season) and applied the same to Jayakwadi Project Stage-I, Maharashtra, India. The present study is in the form of a successful attempt to deal with irrigation planning associated with sustainability and uncertainty.


OPSEARCH ◽  
2007 ◽  
Vol 44 (2) ◽  
pp. 126-136
Author(s):  
V. Sudha ◽  
K. Venugopal

2020 ◽  
Vol 4 (02) ◽  
pp. 34-45
Author(s):  
Naufal Dzikri Afifi ◽  
Ika Arum Puspita ◽  
Mohammad Deni Akbar

Shift to The Front II Komplek Sukamukti Banjaran Project is one of the projects implemented by one of the companies engaged in telecommunications. In its implementation, each project including Shift to The Front II Komplek Sukamukti Banjaran has a time limit specified in the contract. Project scheduling is an important role in predicting both the cost and time in a project. Every project should be able to complete the project before or just in the time specified in the contract. Delay in a project can be anticipated by accelerating the duration of completion by using the crashing method with the application of linear programming. Linear programming will help iteration in the calculation of crashing because if linear programming not used, iteration will be repeated. The objective function in this scheduling is to minimize the cost. This study aims to find a trade-off between the costs and the minimum time expected to complete this project. The acceleration of the duration of this study was carried out using the addition of 4 hours of overtime work, 3 hours of overtime work, 2 hours of overtime work, and 1 hour of overtime work. The normal time for this project is 35 days with a service fee of Rp. 52,335,690. From the results of the crashing analysis, the alternative chosen is to add 1 hour of overtime to 34 days with a total service cost of Rp. 52,375,492. This acceleration will affect the entire project because there are 33 different locations worked on Shift to The Front II and if all these locations can be accelerated then the duration of completion of the entire project will be effective


Sign in / Sign up

Export Citation Format

Share Document