Clustering Analysis of Gene Expression Data based on Semi-supervised Visual Clustering Algorithm

2006 ◽  
Vol 10 (11) ◽  
pp. 981-993 ◽  
Author(s):  
Fu-lai Chung ◽  
Shitong Wang ◽  
Zhaohong Deng ◽  
Chen Shu ◽  
D. Hu
2012 ◽  
Vol 10 (05) ◽  
pp. 1250011
Author(s):  
NATALIA NOVOSELOVA ◽  
IGOR TOM

Many external and internal validity measures have been proposed in order to estimate the number of clusters in gene expression data but as a rule they do not consider the analysis of the stability of the groupings produced by a clustering algorithm. Based on the approach assessing the predictive power or stability of a partitioning, we propose the new measure of cluster validation and the selection procedure to determine the suitable number of clusters. The validity measure is based on the estimation of the "clearness" of the consensus matrix, which is the result of a resampling clustering scheme or consensus clustering. According to the proposed selection procedure the stable clustering result is determined with the reference to the validity measure for the null hypothesis encoding for the absence of clusters. The final number of clusters is selected by analyzing the distance between the validity plots for initial and permutated data sets. We applied the selection procedure to estimate the clustering results on several datasets. As a result the proposed procedure produced an accurate and robust estimate of the number of clusters, which are in agreement with the biological knowledge and gold standards of cluster quality.


1999 ◽  
Author(s):  
Yidong Chen ◽  
Olga Ermolaeva ◽  
Michael L. Bittner ◽  
Paul S. Meltzer ◽  
Jeffrey M. Trent ◽  
...  

2019 ◽  
Vol 20 (S22) ◽  
Author(s):  
Juan Wang ◽  
Cong-Hai Lu ◽  
Jin-Xing Liu ◽  
Ling-Yun Dai ◽  
Xiang-Zhen Kong

Abstract Background Identifying different types of cancer based on gene expression data has become hotspot in bioinformatics research. Clustering cancer gene expression data from multiple cancers to their own class is a significance solution. However, the characteristics of high-dimensional and small samples of gene expression data and the noise of the data make data mining and research difficult. Although there are many effective and feasible methods to deal with this problem, the possibility remains that these methods are flawed. Results In this paper, we propose the graph regularized low-rank representation under symmetric and sparse constraints (sgLRR) method in which we introduce graph regularization based on manifold learning and symmetric sparse constraints into the traditional low-rank representation (LRR). For the sgLRR method, by means of symmetric constraint and sparse constraint, the effect of raw data noise on low-rank representation is alleviated. Further, sgLRR method preserves the important intrinsic local geometrical structures of the raw data by introducing graph regularization. We apply this method to cluster multi-cancer samples based on gene expression data, which improves the clustering quality. First, the gene expression data are decomposed by sgLRR method. And, a lowest rank representation matrix is obtained, which is symmetric and sparse. Then, an affinity matrix is constructed to perform the multi-cancer sample clustering by using a spectral clustering algorithm, i.e., normalized cuts (Ncuts). Finally, the multi-cancer samples clustering is completed. Conclusions A series of comparative experiments demonstrate that the sgLRR method based on low rank representation has a great advantage and remarkable performance in the clustering of multi-cancer samples.


2009 ◽  
Vol 07 (04) ◽  
pp. 645-661 ◽  
Author(s):  
XIN CHEN

There is an increasing interest in clustering time course gene expression data to investigate a wide range of biological processes. However, developing a clustering algorithm ideal for time course gene express data is still challenging. As timing is an important factor in defining true clusters, a clustering algorithm shall explore expression correlations between time points in order to achieve a high clustering accuracy. Moreover, inter-cluster gene relationships are often desired in order to facilitate the computational inference of biological pathways and regulatory networks. In this paper, a new clustering algorithm called CurveSOM is developed to offer both features above. It first presents each gene by a cubic smoothing spline fitted to the time course expression profile, and then groups genes into clusters by applying a self-organizing map-based clustering on the resulting splines. CurveSOM has been tested on three well-studied yeast cell cycle datasets, and compared with four popular programs including Cluster 3.0, GENECLUSTER, MCLUST, and SSClust. The results show that CurveSOM is a very promising tool for the exploratory analysis of time course expression data, as it is not only able to group genes into clusters with high accuracy but also able to find true time-shifted correlations of expression patterns across clusters.


Sign in / Sign up

Export Citation Format

Share Document