consensus clustering
Recently Published Documents


TOTAL DOCUMENTS

489
(FIVE YEARS 280)

H-INDEX

26
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Liu-qing Zhou ◽  
Jin-xiong Shen ◽  
Jie-yu Zhou ◽  
Yao Hu ◽  
Hong-jun Xiao

AbstractN6-methyladenosine (m6A) modifications play an essential role in tumorigenesis. These modifications modulate RNAs, including mRNAs and lncRNAs. However, the prognostic role of m6A-related lncRNAs in head and neck squamous cell carcinoma (HNSCC) is poorly understood. Based on LASSO Cox regression, enrichment analysis, univariate and multivariate Cox regression analysis, a prognostic risk model, and consensus clustering analysis, we analyzed 12 m6A-related lncRNAs in HNSCC sample data from The Cancer Genome Atlas (TCGA) database. We found 12 m6A-related lncRNAs in the training cohort and validated them in all cohorts by Kaplan–Meier and Cox regression analyses, revealing their independent prognostic value in HNSCC. Moreover, ROC analysis was conducted, confirming the strong predictive ability of this signature for HNSCC survival. GSEA and detailed immune infiltration analyses revealed specific pathways associated with m6A-related lncRNAs. In this study, a novel risk model including twelve genes (SAP30L-AS1, AC022098.1, LINC01475, AC090587.2, AC008115.3, AC015911.3, AL122035.2, AC010226.1, AL513190.1, ZNF32-AS1, AL035587.1 and AL031716.1) was built. It could accurately predict HNSCC outcomes and could provide new therapeutic targets for HNSCC patients.


2022 ◽  
Vol 2022 ◽  
pp. 1-20
Author(s):  
Ji Chen ◽  
Qiqi Tao ◽  
Zhichao Lang ◽  
Yuxiang Gao ◽  
Yan Jin ◽  
...  

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, there is a lack of adequate means of treatment prognostication for HCC. Pyroptosis is a newly discovered way of programmed cell death. However, the prognostic role of pyroptosis in HCC has not been thoroughly investigated. Here, we generated a novel prognostic signature to evaluate the prognostic value of pyroptosis-related genes (PRGs) using the data from The Cancer Genome Atlas (TCGA) database. The accuracy of the signature was validated using survival analysis through the International Cancer Genome Consortium cohort ( n = 231 ) and the First Affiliated Hospital of Wenzhou Medical University cohort ( n = 180 ). Compared with other clinical factors, the risk score of the signature was found to be associated with better patient outcomes. The enrichment analysis identified multiple pathways related with pyroptosis in HCC. Furthermore, drug sensitivity testing identified six potential chemotherapeutic agents to provide possible treatment avenues. Interestingly, patients with low risk were confirmed to be associated with lower tumor mutation burden (TMB). However, patients at high risk were found to have a higher count of immune cells. Consensus clustering was performed to identify two main molecular subtypes (named clusters A and B) based on the signature. It was found that compared with cluster B, better survival outcomes and lower TMB were observed in cluster A. In conclusion, signature construction and molecular subtype identification of PRGs could be used to predict the prognosis of HCC, which may provide a specific reference for the development of novel biomarkers for HCC treatment.


Author(s):  
Zaoqu Liu ◽  
Yaxin Guo ◽  
Xiuxiu Yang ◽  
Chen Chen ◽  
Dandan Fan ◽  
...  

The immune microenvironment has profound impacts on the initiation and progression of colorectal cancer (CRC). Therefore, the goal of this article is to identify two robust immune subtypes in CRC, further provide novel insights for the underlying mechanisms and clinical management. In this study, two CRC immune subtypes were identified using the consensus clustering of immune-related gene expression profiles in the meta-GEO dataset (n = 1,198), and their reproducibility was further verified in the TCGA-CRC dataset (n = 638). Subsequently, we characterized the immune escape mechanisms, gene alterations, and clinical features of two immune subtypes. Cluster 1 (C1) was defined as the “immune cold subtype” with immune cell depletion and deficiency, while cluster 2 (C2) was designed as the “immune hot subtype”, with abundant immune cell infiltration and matrix activation. We also underlined the potential immune escape mechanisms: lack of MHC molecules and defective tumor antigen presentation capacity in C1, increased immunosuppressive molecules in C2. The prognosis and sensitivity to 5-FU, Cisplatin and immunotherapy differed between two subtypes. According to the two immune subtypes, we developed a prognosis associated risk score (PARS) with the accurate performance for predicting the prognosis. Additionally, two nomograms for overall survival (OS) and disease-free survival (DFS) were further constructed to facilitate clinical management. Overall, our research provides new references and insights for understanding and refining the CRC.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Min Li ◽  
Wenye Zhu ◽  
Ummair Saeed ◽  
Shibo Sun ◽  
Yan Fang ◽  
...  

Abstract Background Asthma is a heterogeneous disease and different phenotypes based on clinical parameters have been identified. However, the molecular subgroups of asthma defined by gene expression profiles of induced sputum have been rarely reported. Methods We re-analyzed the asthma transcriptional profiles of the dataset of GSE45111. A deep bioinformatics analysis was performed. We classified 47 asthma cases into different subgroups using unsupervised consensus clustering analysis. Clinical features of the subgroups were characterized, and their biological function and immune status were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and single sample Gene Set Enrichment Analysis (ssGSEA). Weighted gene co-expression network analysis (WGCNA) and protein–protein interaction (PPI) network were performed to identify key gene modules and hub genes. Results Unsupervised consensus clustering of gene expression profiles in asthma identified two distinct subgroups (Cluster I/II), which were significantly associated with eosinophilic asthma (EA) and paucigranulocytic asthma (PGA). The differentially expressed genes (DEGs) between the two subgroups were primarily enriched in immune response regulation and signal transduction. The ssGSEA suggested the different immune infiltration and function scores between the two clusters. The WGCNA and PPI analysis identified three hub genes: THBS1, CCL22 and CCR7. ROC analysis further suggested that the three hub genes had a good ability to differentiate the Cluster I from the Cluster II. Conclusions Based on the gene expression profiles of the induced sputum, we identified two asthma subgroups, which revealed different clinical characteristics, gene expression patterns, biological functions and immune status. The transcriptional classification confirms the molecular heterogeneity of asthma and provides a framework for more in-depth research on the mechanisms of asthma.


2022 ◽  
Vol 2022 ◽  
pp. 1-30
Author(s):  
Qiuxiang Chen ◽  
Xiaojing Du ◽  
Sunkuan Hu ◽  
Qingke Huang

Background. Sufficient evidence indicated the crucial role of NF-κB family played in gastric cancer (GC). The novel discovery that NF-κB could regulate cancer metabolism and immune evasion greatly increased its attraction in cancer research. However, the correlation among NF-κB, metabolism, and cancer immunity in GC still requires further improvement. Methods. TCGA, hTFtarget, and MSigDB databases were employed to identify NF-κB-related metabolic genes (NFMGs). Based on NFMGs, we used consensus clustering to divide GC patients into two subtypes. GSVA was employed to analyze the enriched pathway. ESTIMATE, CIBERSORT, ssGSEA, and MCPcounter algorithms were applied to evaluate immune infiltration in GC. The tumor immune dysfunction and exclusion (TIDE) algorithm was used to predict patients’ response to immunotherapy. We also established a NFMG-related risk score by using the LASSO regression model and assessed its efficacy in TCGA and GSE62254 datasets. Results. We used 27 NFMGs to conduct an unsupervised clustering on GC samples and classified them into two clusters. Cluster 1 was characterized by high active metabolism, tumor mutant burden, and microsatellite instability, while cluster 2 was featured with high immune infiltration. Compared to cluster 2, cluster 1 had a better prognosis and higher response to immunotherapy. In addition, we constructed a 12-NFMG (ADCY3, AHCY, CHDH, GUCY1A2, ITPA, MTHFD2, NRP1, POLA1, POLR1A, POLR3A, POLR3K, and SRM) risk score. Followed analysis indicated that this risk score acted as an effectively prognostic factor in GC. Conclusion. Our data suggested that GC subtypes classified by NFMGs may effectively guide prognosis and immunotherapy. Further study of these NFMGs will deepen our understanding of NF-κB-mediated cancer metabolism and immunity.


Author(s):  
Hongping Zhan ◽  
Weiwei Lin ◽  
Feiqiao Mao ◽  
Minxian Xu ◽  
Guangxin Wu ◽  
...  
Keyword(s):  

2022 ◽  
Vol 70 (1) ◽  
pp. 1993-2011
Author(s):  
Tossapon Boongoen ◽  
Natthakan Iam-On

2021 ◽  
Vol 8 ◽  
Author(s):  
Chen Jin ◽  
Rui Li ◽  
Tuo Deng ◽  
Jialiang Li ◽  
Yan Yang ◽  
...  

Hepatocellular carcinoma (HCC) is a highly invasive malignancy prone to recurrence, and patients with HCC have a low 5-year survival rate. Long non-coding RNAs (lncRNAs) play a vital role in the occurrence and development of HCC. N6-methyladenosine methylation (m6A) is the most common modification influencing cancer development. Here, we used the transcriptome of m6A regulators and lncRNAs, along with the complete corresponding clinical HCC patient information obtained from The Cancer Genome Atlas (TCGA), to explore the role of m6A regulator-related lncRNA (m6ARlnc) as a prognostic biomarker in patients with HCC. The prognostic m6ARlnc was selected using Pearson correlation and univariate Cox regression analyses. Moreover, three clusters were obtained via consensus clustering analysis and further investigated for differences in immune infiltration, immune microenvironment, and prognosis. Subsequently, nine m6ARlncs were identified with Lasso-Cox regression analysis to construct the prognostic signature m6A-9LPS for patients with HCC in the training cohort (n = 226). Based on m6A-9LPS, the risk score for each case was calculated. Patients were then divided into high- and low-risk subgroups based on the cutoff value set by the X-tile software. m6A-9LPS showed a strong prognosis prediction ability in the validation cohort (n = 116), the whole cohort (n = 342), and even clinicopathological stratified survival analysis. Combining the risk score and clinical characteristics, we established a nomogram for predicting the overall survival (OS) of patients. To further understand the mechanism underlying the m6A-9LPS-based classification of prognosis differences, KEGG and GO enrichment analyses, competitive endogenous RNA (ceRNA) network, chemotherapeutic agent sensibility, and immune checkpoint expression level were assessed. Taken together, m6A-9LPS could be used as a precise prediction model for the prognosis of patients with HCC, which will help in individualized treatment of HCC.


2021 ◽  
Author(s):  
Prateek Singh ◽  
Rajat Ujjainiya ◽  
Satyartha Prakash ◽  
Salwa Naushin ◽  
Viren Sardana ◽  
...  

Data science has been an invaluable part of the COVID-19 pandemic response with multiple applications, ranging from tracking viral evolution to understanding the effectiveness of interventions. Asymptomatic breakthrough infections have been a major problem during the ongoing surge of Delta variant globally. Serological discrimination of vaccine response from infection has so far been limited to Spike protein vaccines used in the higher-income regions. Here, we show for the first time how statistical and machine learning (ML) approaches can discriminate SARS-CoV-2 infection from immune response to an inactivated whole virion vaccine (BBV152, Covaxin, India), thereby permitting real-world vaccine effectiveness assessments from cohort-based serosurveys in Asia and Africa where such vaccines are commonly used. Briefly, we accessed serial data on Anti-S and Anti-NC antibody concentration values, along with age, sex, number of doses, and number of days since the last vaccine dose for 1823 Covaxin recipients. An ensemble ML model, incorporating a consensus clustering approach alongside the support vector machine (SVM) model, was built on 1063 samples where reliable qualifying data existed, and then applied to the entire dataset. Of 1448 self-reported negative subjects, 724 were classified as infected. Since the vaccine contains wild-type virus and the antibodies induced will neutralize wild type much better than Delta variant, we determined the relative ability of a random subset of such samples to neutralize Delta versus wild type strain. In 100 of 156 samples, where ML prediction differed from self-reported uninfected status, Delta variant, was neutralized more effectively than the wild type, which cannot happen without infection. The fraction rose to 71.8% (28 of 39) in subjects predicted to be infected during the surge, which is concordant with the percentage of sequences classified as Delta (75.6%-80.2%) over the same period.


2021 ◽  
Vol 12 ◽  
Author(s):  
Minggao Zhu ◽  
Yachao Cui ◽  
Qi Mo ◽  
Junwei Zhang ◽  
Ting Zhao ◽  
...  

N6-methyladenosine (m6A) RNA modification is a reversible mechanism that regulates eukaryotic gene expression. Growing evidence has demonstrated an association between m6A modification and tumorigenesis and response to immunotherapy. However, the overall influence of m6A regulators on the tumor microenvironment and their effect on the response to immunotherapy in lung adenocarcinoma remains to be explored. Here, we comprehensively analyzed the m6A modification patterns of 936 lung adenocarcinoma samples based on 24 m6A regulators. First, we described the features of genetic variation in these m6A regulators. Many m6A regulators were aberrantly expressed in tumors and negatively correlated with most tumor-infiltrating immune cell types. Furthermore, we identified three m6A modification patterns using a consensus clustering method. m6A cluster B was preferentially associated with a favorable prognosis and enriched in metabolism-associated pathways. In contrast, m6A cluster A was associated with the worst prognosis and was enriched in the process of DNA repair. m6A cluster C was characterized by activation of the immune system and a higher stromal cell score. Surprisingly, patients who received radiotherapy had a better prognosis than patients without radiotherapy only in the m6A cluster C group. Subsequently, we constructed an m6A score model that qualified the m6A modification level of individual samples by using principal component analysis algorithms. Patients with high m6A score were characterized by enhanced immune cell infiltration and prolonged survival time and were associated with lower tumor mutation burden and PD-1/CTLA4 expression. The combination of the m6A score and tumor mutation burden could accurately predict the prognosis of patients with lung adenocarcinoma. Furthermore, patients with high m6A score exhibited greater prognostic benefits from radiotherapy and immunotherapy. This study demonstrates that m6A modification is significantly associated with tumor microenvironment diversity and prognosis. A comprehensive evaluation of m6A modification patterns in single tumors will expand our understanding of the tumor immune landscape. In addition, our m6A score model demonstrated that the level of immune cell infiltration plays a significant role in cancer immunotherapy and provides a basis to increase the efficiency of current immune therapies and promote the clinical success of immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document