A hybrid teaching–learning-based optimization technique for optimal DG sizing and placement in radial distribution systems

2018 ◽  
Vol 23 (20) ◽  
pp. 9899-9917 ◽  
Author(s):  
Imran Ahmad Quadri ◽  
Suman Bhowmick ◽  
Dheeraj Joshi
2021 ◽  
Vol 13 (12) ◽  
pp. 6644
Author(s):  
Ali Selim ◽  
Salah Kamel ◽  
Amal A. Mohamed ◽  
Ehab E. Elattar

In recent years, the integration of distributed generators (DGs) in radial distribution systems (RDS) has received considerable attention in power system research. The major purpose of DG integration is to decrease the power losses and improve the voltage profiles that directly lead to improving the overall efficiency of the power system. Therefore, this paper proposes a hybrid optimization technique based on analytical and metaheuristic algorithms for optimal DG allocation in RDS. In the proposed technique, the loss sensitivity factor (LSF) is utilized to reduce the search space of the DG locations, while the analytical technique is used to calculate initial DG sizes based on a mathematical formulation. Then, a metaheuristic sine cosine algorithm (SCA) is applied to identify the optimal DG allocation based on the LSF and analytical techniques instead of using random initialization. To prove the superiority and high performance of the proposed hybrid technique, two standard RDSs, IEEE 33-bus and 69-bus, are considered. Additionally, a comparison between the proposed techniques, standard SCA, and other existing optimization techniques is carried out. The main findings confirmed the enhancement in the convergence of the proposed technique compared with the standard SCA and the ability to allocate multiple DGs in RDS.


2021 ◽  
Vol 13 (6) ◽  
pp. 3308
Author(s):  
Chandrasekaran Venkatesan ◽  
Raju Kannadasan ◽  
Mohammed H. Alsharif ◽  
Mun-Kyeom Kim ◽  
Jamel Nebhen

Distributed generation (DG) and capacitor bank (CB) allocation in distribution systems (DS) has the potential to enhance the overall system performance of radial distribution systems (RDS) using a multiobjective optimization technique. The benefits of CB and DG injection in the RDS greatly depend on selecting a suitable number of CBs/DGs and their volume along with the finest location. This work proposes applying a hybrid enhanced grey wolf optimizer and particle swarm optimization (EGWO-PSO) algorithm for optimal placement and sizing of DGs and CBs. EGWO is a metaheuristic optimization technique stimulated by grey wolves. On the other hand, PSO is a swarm-based metaheuristic optimization algorithm that finds the optimal solution to a problem through the movement of the particles. The advantages of both techniques are utilized to acquire mutual benefits, i.e., the exploration ability of the EGWO and the exploitation ability of the PSO. The proposed hybrid method has a high convergence speed and is not trapped in local optimal. Using this hybrid method, technical, economic, and environmental advantages are enhanced using multiobjective functions (MOF) such as minimizing active power losses, voltage deviation index (VDI), the total cost of electrical energy, and total emissions from generation sources and enhancing the voltage stability index (VSI). Six different operational cases are considered and carried out on two standard distribution systems, namely, IEEE 33- and 69-bus RDSs, to demonstrate the proposed scheme’s effectiveness extensively. The simulated results are compared with existing optimization algorithms. From the obtained results, it is observed that the proposed EGWO-PSO gives distinguished enhancements in multiobjective optimization of different conflicting objective functions and high-level performance with global optimal values.


Author(s):  
Sumit Banerjee ◽  
Chandan Chanda ◽  
Deblina Maity

This article presents a novel improved teaching learning based optimization (I-TLBO) technique to solve economic load dispatch (ELD) problem of the thermal plant without considering transmission losses. The proposed methodology can take care of ELD problems considering practical nonlinearities such as ramp rate limit, prohibited operating zone and valve point loading. The objective of economic load dispatch is to determine the optimal power generation of the units to meet the load demand, such that the overall cost of generation is minimized, while satisfying different operational constraints. I-TLBO is a recently developed evolutionary algorithm based on two basic concepts of education namely teaching phase and learning phase. The effectiveness of the proposed algorithm has been verified on test system with equality and inequality constraints. Compared with the other existing techniques demonstrates the superiority of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document