Optimization of planning cost of radial distribution networks at different loads with the optimal placement of distribution STATCOM using differential evolution algorithm

2020 ◽  
Vol 24 (17) ◽  
pp. 13269-13284
Author(s):  
Joseph Sanam
Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-28
Author(s):  
Tri Phuoc Nguyen ◽  
Tuan Trong Nguyen ◽  
Trung Hieu Quang ◽  
Dieu Ngoc Vo ◽  
Mohammad Hassan Khooban

This paper proposes a novel hybrid algorithm based on a combination of the simple quadratic interpolation and the symbiosis organisms search algorithm (SQI-SOS) for finding the optimal location and size of capacitors in radial distribution networks. The objective of the problem is to minimize the system operating cost so that the net yearly savings of the system are increased. The effectiveness of the SQI-SOS has been tested on 33-, 69-, and 119-bus radial distribution networks with different load models. The obtained results from the test system by the proposed SQI-SOS are compared with those from the conventional SOS and other mature optimization methods in the literature. The result comparison has shown that the proposed SQI-SOS algorithm can provide a better solution than the other methods. Accordingly, the proposed SQI-SOS can be a very effective and efficient method for dealing with the optimal capacitor placement problem in distribution networks.


2009 ◽  
Vol 12 (1) ◽  
pp. 66-82 ◽  
Author(s):  
C. R. Suribabu

Water distribution networks are considered as the most important entity in the urban infrastructure system and need huge investment for construction. The inherent problem associated with cost optimisation in the design of water distribution networks is due to the nonlinear relationship between flow and head loss and availability of the discrete nature of pipe sizes. In the last few decades, many researchers focused on several stochastic methods of optimisation algorithms. The present paper is focused on the Differential Evolution algorithm (henceforth referred to as DE) and utilises a similar concept as the genetic algorithm to achieve a goal of optimisation of the specified objective function. A simulation–optimisation model is developed in which the optimization is done by DE. Four well-known benchmark networks were taken for application of the DE algorithm to optimise pipe size and rehabilitation of the water distribution network. The findings of the present study reveal that DE is a good alternative to the genetic algorithm and other heuristic approaches for optimal sizing of water distribution pipes.


Sign in / Sign up

Export Citation Format

Share Document