Optimization of Energy Loss Cost of Distribution Networks with the Optimal Placement and Sizing of DSTATCOM Using Differential Evolution Algorithm

2017 ◽  
Vol 42 (7) ◽  
pp. 2851-2865 ◽  
Author(s):  
Joseph Sanam ◽  
Sanjib Ganguly ◽  
A. K. Panda ◽  
Chaduvula Hemanth
2009 ◽  
Vol 12 (1) ◽  
pp. 66-82 ◽  
Author(s):  
C. R. Suribabu

Water distribution networks are considered as the most important entity in the urban infrastructure system and need huge investment for construction. The inherent problem associated with cost optimisation in the design of water distribution networks is due to the nonlinear relationship between flow and head loss and availability of the discrete nature of pipe sizes. In the last few decades, many researchers focused on several stochastic methods of optimisation algorithms. The present paper is focused on the Differential Evolution algorithm (henceforth referred to as DE) and utilises a similar concept as the genetic algorithm to achieve a goal of optimisation of the specified objective function. A simulation–optimisation model is developed in which the optimization is done by DE. Four well-known benchmark networks were taken for application of the DE algorithm to optimise pipe size and rehabilitation of the water distribution network. The findings of the present study reveal that DE is a good alternative to the genetic algorithm and other heuristic approaches for optimal sizing of water distribution pipes.


Author(s):  
N. Karuppiah, Et. al.

The necessity of Distributed Generation (DG) in the modern power system has increased greatly. Optimal placement and sizing of DGs have a significant impact on the objectives of voltage stability enhancement, real and reactive power loss minimization and power system security and reliability. Different types of DGs such as Type I, Type II, Type III and Type IVare placed. The optimal placement of these DGs is found using Voltage Stability Index (VSI). The optimal sizing of these DGs is done using Differential Evolution (DE) algorithm. MATLAB simulation is carried out in standard IEEE 33-bus test system. The test is performed for various combinations of different types of DG. The results show that the voltage stability index along with Differential Evolution algorithm provides better voltage profile and power loss minimization as compared to the system without DG.


Sign in / Sign up

Export Citation Format

Share Document