scholarly journals Multiple-deme parallel genetic algorithm based on modular neural network for effective load shedding

2021 ◽  
Author(s):  
Ali Gholami-Rahimabadi ◽  
Hadi Razmi ◽  
Hasan Doagou-Mojarrad
2021 ◽  
Author(s):  
Ali Gholami-Rahimabadi ◽  
Hadi Razmi ◽  
Hasan Doagou-Mojarrad

Abstract One of the most effective corrective control strategies to prevent voltage collapse and instability is load shedding. In this paper, a multiple-deme parallel genetic algorithm (MDPGA) is used for a suitable design of load shedding. The load shedding algorithm is implemented when the voltage stability margin index of the power system is lower than a predefined value. In order to increase the computational speed, the voltage stability margin index is estimated by a modular neural network method in a fraction of a second. In addition, in order to use the exact values of the voltage stability margin index for neural network training, a simultaneous equilibrium tracing technique has been employed considering the detailed model of the components of the generating units such as the governor and the excitation system. In the proposed algorithm, the entire population is partitioned into several isolated subpopulations (demes) in which demes distributed in different processors and individuals may migrate occasionally from one subpopulation to another. The proposed technique has been tested on New England-39 bus test system and the obtained results indicate the efficiency of the proposed method.


SINERGI ◽  
2020 ◽  
Vol 24 (1) ◽  
pp. 29
Author(s):  
Widi Aribowo

Load shedding plays a key part in the avoidance of the power system outage. The frequency and voltage fluidity leads to the spread of a power system into sub-systems and leads to the outage as well as the severe breakdown of the system utility.  In recent years, Neural networks have been very victorious in several signal processing and control applications.  Recurrent Neural networks are capable of handling complex and non-linear problems. This paper provides an algorithm for load shedding using ELMAN Recurrent Neural Networks (RNN). Elman has proposed a partially RNN, where the feedforward connections are modifiable and the recurrent connections are fixed. The research is implemented in MATLAB and the performance is tested with a 6 bus system. The results are compared with the Genetic Algorithm (GA), Combining Genetic Algorithm with Feed Forward Neural Network (hybrid) and RNN. The proposed method is capable of assigning load releases needed and more efficient than other methods. 


Author(s):  
Le Trong Nghia ◽  
Quyen Huy Anh ◽  
Phung Trieu Tan ◽  
N Thai An

This paper proposes the method of applying Artificial Neural Network (ANN) with Back Propagation (BP) algorithm in combination or hybrid with Genetic Algorithm (GA) to propose load shedding strategies in the power system. The Genetic Algorithm is used to support the training of Back Propagation Neural Networks (BPNN) to improve regression ability, minimize errors and reduce the training time. Besides, the Relief algorithm is used to reduce the number of input variables of the neural network. The minimum load shedding with consideration of the primary and secondary control is calculated to restore the frequency of the electrical system. The distribution of power load shedding at each load bus of the system based on the phase electrical distance between the outage generator and the load buses. The simulation results have been verified through using MATLAB and PowerWorld software systems. The results show that the Hybrid Gen-Bayesian algorithm (GA-Trainbr) has a remarkable superiority in accuracy as well as training time. The effectiveness of the proposed method is tested on the IEEE 37 bus 9 generators standard system diagram showing the effectiveness of the proposed method.


Author(s):  
Mathieu Autonès ◽  
Ariel Beck ◽  
Philippe Camacho ◽  
Nicolas Lassabe ◽  
Hervé Luga ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document