Arbitrary-oriented object detection via dense feature fusion and attention model for remote sensing super-resolution image

2020 ◽  
Vol 32 (18) ◽  
pp. 14549-14562 ◽  
Author(s):  
Fuhao Zou ◽  
Wei Xiao ◽  
Wanting Ji ◽  
Kunkun He ◽  
Zhixiang Yang ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1142
Author(s):  
Xinying Wang ◽  
Yingdan Wu ◽  
Yang Ming ◽  
Hui Lv

Due to increasingly complex factors of image degradation, inferring high-frequency details of remote sensing imagery is more difficult compared to ordinary digital photos. This paper proposes an adaptive multi-scale feature fusion network (AMFFN) for remote sensing image super-resolution. Firstly, the features are extracted from the original low-resolution image. Then several adaptive multi-scale feature extraction (AMFE) modules, the squeeze-and-excited and adaptive gating mechanisms are adopted for feature extraction and fusion. Finally, the sub-pixel convolution method is used to reconstruct the high-resolution image. Experiments are performed on three datasets, the key characteristics, such as the number of AMFEs and the gating connection way are studied, and super-resolution of remote sensing imagery of different scale factors are qualitatively and quantitatively analyzed. The results show that our method outperforms the classic methods, such as Super-Resolution Convolutional Neural Network(SRCNN), Efficient Sub-Pixel Convolutional Network (ESPCN), and multi-scale residual CNN(MSRN).


2021 ◽  
Vol 42 (17) ◽  
pp. 6670-6691
Author(s):  
Qiuyu Guan ◽  
Zhenshen Qu ◽  
Ming Zeng ◽  
Jianxiong Shen ◽  
Jingda Du

2021 ◽  
Vol 70 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaocong Lu ◽  
Jian Ji ◽  
Zhiqi Xing ◽  
Qiguang Miao

2021 ◽  
Vol 13 (9) ◽  
pp. 1854
Author(s):  
Syed Muhammad Arsalan Bashir ◽  
Yi Wang

This paper deals with detecting small objects in remote sensing images from satellites or any aerial vehicle by utilizing the concept of image super-resolution for image resolution enhancement using a deep-learning-based detection method. This paper provides a rationale for image super-resolution for small objects by improving the current super-resolution (SR) framework by incorporating a cyclic generative adversarial network (GAN) and residual feature aggregation (RFA) to improve detection performance. The novelty of the method is threefold: first, a framework is proposed, independent of the final object detector used in research, i.e., YOLOv3 could be replaced with Faster R-CNN or any object detector to perform object detection; second, a residual feature aggregation network was used in the generator, which significantly improved the detection performance as the RFA network detected complex features; and third, the whole network was transformed into a cyclic GAN. The image super-resolution cyclic GAN with RFA and YOLO as the detection network is termed as SRCGAN-RFA-YOLO, which is compared with the detection accuracies of other methods. Rigorous experiments on both satellite images and aerial images (ISPRS Potsdam, VAID, and Draper Satellite Image Chronology datasets) were performed, and the results showed that the detection performance increased by using super-resolution methods for spatial resolution enhancement; for an IoU of 0.10, AP of 0.7867 was achieved for a scale factor of 16.


2021 ◽  
Vol 13 (22) ◽  
pp. 4517
Author(s):  
Falin Wu ◽  
Jiaqi He ◽  
Guopeng Zhou ◽  
Haolun Li ◽  
Yushuang Liu ◽  
...  

Object detection in remote sensing images plays an important role in both military and civilian remote sensing applications. Objects in remote sensing images are different from those in natural images. They have the characteristics of scale diversity, arbitrary directivity, and dense arrangement, which causes difficulties in object detection. For objects with a large aspect ratio and that are oblique and densely arranged, using an oriented bounding box can help to avoid deleting some correct detection bounding boxes by mistake. The classic rotational region convolutional neural network (R2CNN) has advantages for text detection. However, R2CNN has poor performance in the detection of slender objects with arbitrary directivity in remote sensing images, and its fault tolerance rate is low. In order to solve this problem, this paper proposes an improved R2CNN based on a double detection head structure and a three-point regression method, namely, TPR-R2CNN. The proposed network modifies the original R2CNN network structure by applying a double fully connected (2-fc) detection head and classification fusion. One detection head is for classification and horizontal bounding box regression, the other is for classification and oriented bounding box regression. The three-point regression method (TPR) is proposed for oriented bounding box regression, which determines the positions of the oriented bounding box by regressing the coordinates of the center point and the first two vertices. The proposed network was validated on the DOTA-v1.5 and HRSC2016 datasets, and it achieved a mean average precision (mAP) of 3.90% and 15.27%, respectively, from feature pyramid network (FPN) baselines with a ResNet-50 backbone.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 223373-223384
Author(s):  
Lin Zhou ◽  
Haoran Wei ◽  
Hao Li ◽  
Wenzhe Zhao ◽  
Yi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document