oriented object
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 66)

H-INDEX

10
(FIVE YEARS 4)

2021 ◽  
Vol 12 (1) ◽  
pp. 135
Author(s):  
Andrius Dzedzickis ◽  
Jurga Subačiūtė-Žemaitienė ◽  
Ernestas Šutinys ◽  
Urtė Samukaitė-Bubnienė ◽  
Vytautas Bučinskas

This review is dedicated to the advanced applications of robotic technologies in the industrial field. Robotic solutions in areas with non-intensive applications are presented, and their implementations are analysed. We also provide an overview of survey publications and technical reports, classified by application criteria, and the development of the structure of existing solutions, and identify recent research gaps. The analysis results reveal the background to the existing obstacles and problems. These issues relate to the areas of psychology, human nature, special artificial intelligence (AI) implementation, and the robot-oriented object design paradigm. Analysis of robot applications shows that the existing emerging applications in robotics face technical and psychological obstacles. The results of this review revealed four directions of required advancement in robotics: development of intelligent companions; improved implementation of AI-based solutions; robot-oriented design of objects; and psychological solutions for robot–human collaboration.


2021 ◽  
Vol 42 (24) ◽  
pp. 9542-9564
Author(s):  
Qiuyu Guan ◽  
Zhenshen Qu ◽  
Pengbo Zhao ◽  
Ming Zeng ◽  
Junyu Liu

2021 ◽  
Vol 13 (22) ◽  
pp. 4517
Author(s):  
Falin Wu ◽  
Jiaqi He ◽  
Guopeng Zhou ◽  
Haolun Li ◽  
Yushuang Liu ◽  
...  

Object detection in remote sensing images plays an important role in both military and civilian remote sensing applications. Objects in remote sensing images are different from those in natural images. They have the characteristics of scale diversity, arbitrary directivity, and dense arrangement, which causes difficulties in object detection. For objects with a large aspect ratio and that are oblique and densely arranged, using an oriented bounding box can help to avoid deleting some correct detection bounding boxes by mistake. The classic rotational region convolutional neural network (R2CNN) has advantages for text detection. However, R2CNN has poor performance in the detection of slender objects with arbitrary directivity in remote sensing images, and its fault tolerance rate is low. In order to solve this problem, this paper proposes an improved R2CNN based on a double detection head structure and a three-point regression method, namely, TPR-R2CNN. The proposed network modifies the original R2CNN network structure by applying a double fully connected (2-fc) detection head and classification fusion. One detection head is for classification and horizontal bounding box regression, the other is for classification and oriented bounding box regression. The three-point regression method (TPR) is proposed for oriented bounding box regression, which determines the positions of the oriented bounding box by regressing the coordinates of the center point and the first two vertices. The proposed network was validated on the DOTA-v1.5 and HRSC2016 datasets, and it achieved a mean average precision (mAP) of 3.90% and 15.27%, respectively, from feature pyramid network (FPN) baselines with a ResNet-50 backbone.


2021 ◽  
Author(s):  
Shuai Liu ◽  
Lu Zhang ◽  
Shuai Hao ◽  
Huchuan Lu ◽  
You He

2021 ◽  
Vol 13 (18) ◽  
pp. 3731
Author(s):  
Jian Wang ◽  
Le Yang ◽  
Fan Li

To detect rotated objects in remote sensing images, researchers have proposed a series of arbitrary-oriented object detection methods, which place multiple anchors with different angles, scales, and aspect ratios on the images. However, a major difference between remote sensing images and natural images is the small probability of overlap between objects in the same category, so the anchor-based design can introduce much redundancy during the detection process. In this paper, we convert the detection problem to a center point prediction problem, where the pre-defined anchors can be discarded. By directly predicting the center point, orientation, and corresponding height and width of the object, our methods can simplify the design of the model and reduce the computations related to anchors. In order to further fuse the multi-level features and get accurate object centers, a deformable feature pyramid network is proposed, to detect objects under complex backgrounds and various orientations of rotated objects. Experiments and analysis on two remote sensing datasets, DOTA and HRSC2016, demonstrate the effectiveness of our approach. Our best model, equipped with Deformable-FPN, achieved 74.75% mAP on DOTA and 96.59% on HRSC2016 with a single-stage model, single-scale training, and testing. By detecting arbitrarily oriented objects from their centers, the proposed model performs competitively against oriented anchor-based methods.


2021 ◽  
Vol 13 (18) ◽  
pp. 3622
Author(s):  
Xu He ◽  
Shiping Ma ◽  
Linyuan He ◽  
Le Ru ◽  
Chen Wang

Oriented object detection in remote sensing images (RSIs) is a significant yet challenging Earth Vision task, as the objects in RSIs usually emerge with complicated backgrounds, arbitrary orientations, multi-scale distributions, and dramatic aspect ratio variations. Existing oriented object detectors are mostly inherited from the anchor-based paradigm. However, the prominent performance of high-precision and real-time detection with anchor-based detectors is overshadowed by the design limitations of tediously rotated anchors. By using the simplicity and efficiency of keypoint-based detection, in this work, we extend a keypoint-based detector to the task of oriented object detection in RSIs. Specifically, we first simplify the oriented bounding box (OBB) as a center-based rotated inscribed ellipse (RIE), and then employ six parameters to represent the RIE inside each OBB: the center point position of the RIE, the offsets of the long half axis, the length of the short half axis, and an orientation label. In addition, to resolve the influence of complex backgrounds and large-scale variations, a high-resolution gated aggregation network (HRGANet) is designed to identify the targets of interest from complex backgrounds and fuse multi-scale features by using a gated aggregation model (GAM). Furthermore, by analyzing the influence of eccentricity on orientation error, eccentricity-wise orientation loss (ewoLoss) is proposed to assign the penalties on the orientation loss based on the eccentricity of the RIE, which effectively improves the accuracy of the detection of oriented objects with a large aspect ratio. Extensive experimental results on the DOTA and HRSC2016 datasets demonstrate the effectiveness of the proposed method.


2021 ◽  
Author(s):  
Mengyuan Wang ◽  
Xuanyu Zhang ◽  
Chuanbo Yu ◽  
Tingyi Guo ◽  
Jingxiao Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document