scholarly journals HEU Emotion: a large-scale database for multimodal emotion recognition in the wild

Author(s):  
Jing Chen ◽  
Chenhui Wang ◽  
Kejun Wang ◽  
Chaoqun Yin ◽  
Cong Zhao ◽  
...  
2021 ◽  
Vol 25 (4) ◽  
pp. 1031-1045
Author(s):  
Helang Lai ◽  
Keke Wu ◽  
Lingli Li

Emotion recognition in conversations is crucial as there is an urgent need to improve the overall experience of human-computer interactions. A promising improvement in this field is to develop a model that can effectively extract adequate contexts of a test utterance. We introduce a novel model, termed hierarchical memory networks (HMN), to address the issues of recognizing utterance level emotions. HMN divides the contexts into different aspects and employs different step lengths to represent the weights of these aspects. To model the self dependencies, HMN takes independent local memory networks to model these aspects. Further, to capture the interpersonal dependencies, HMN employs global memory networks to integrate the local outputs into global storages. Such storages can generate contextual summaries and help to find the emotional dependent utterance that is most relevant to the test utterance. With an attention-based multi-hops scheme, these storages are then merged with the test utterance using an addition operation in the iterations. Experiments on the IEMOCAP dataset show our model outperforms the compared methods with accuracy improvement.


2021 ◽  
pp. 1-1
Author(s):  
Shao-Yen Tseng ◽  
Shrikanth Narayanan ◽  
Panayiotis Georgiou

Author(s):  
Mehdi Bahri ◽  
Eimear O’ Sullivan ◽  
Shunwang Gong ◽  
Feng Liu ◽  
Xiaoming Liu ◽  
...  

AbstractStandard registration algorithms need to be independently applied to each surface to register, following careful pre-processing and hand-tuning. Recently, learning-based approaches have emerged that reduce the registration of new scans to running inference with a previously-trained model. The potential benefits are multifold: inference is typically orders of magnitude faster than solving a new instance of a difficult optimization problem, deep learning models can be made robust to noise and corruption, and the trained model may be re-used for other tasks, e.g. through transfer learning. In this paper, we cast the registration task as a surface-to-surface translation problem, and design a model to reliably capture the latent geometric information directly from raw 3D face scans. We introduce Shape-My-Face (SMF), a powerful encoder-decoder architecture based on an improved point cloud encoder, a novel visual attention mechanism, graph convolutional decoders with skip connections, and a specialized mouth model that we smoothly integrate with the mesh convolutions. Compared to the previous state-of-the-art learning algorithms for non-rigid registration of face scans, SMF only requires the raw data to be rigidly aligned (with scaling) with a pre-defined face template. Additionally, our model provides topologically-sound meshes with minimal supervision, offers faster training time, has orders of magnitude fewer trainable parameters, is more robust to noise, and can generalize to previously unseen datasets. We extensively evaluate the quality of our registrations on diverse data. We demonstrate the robustness and generalizability of our model with in-the-wild face scans across different modalities, sensor types, and resolutions. Finally, we show that, by learning to register scans, SMF produces a hybrid linear and non-linear morphable model. Manipulation of the latent space of SMF allows for shape generation, and morphing applications such as expression transfer in-the-wild. We train SMF on a dataset of human faces comprising 9 large-scale databases on commodity hardware.


2021 ◽  
Vol 19 (2) ◽  
Author(s):  
Dong Liu ◽  
Longxi Chen ◽  
Zhiyong Wang ◽  
Guangqiang Diao

i-com ◽  
2020 ◽  
Vol 19 (2) ◽  
pp. 139-151
Author(s):  
Thomas Schmidt ◽  
Miriam Schlindwein ◽  
Katharina Lichtner ◽  
Christian Wolff

AbstractDue to progress in affective computing, various forms of general purpose sentiment/emotion recognition software have become available. However, the application of such tools in usability engineering (UE) for measuring the emotional state of participants is rarely employed. We investigate if the application of sentiment/emotion recognition software is beneficial for gathering objective and intuitive data that can predict usability similar to traditional usability metrics. We present the results of a UE project examining this question for the three modalities text, speech and face. We perform a large scale usability test (N = 125) with a counterbalanced within-subject design with two websites of varying usability. We have identified a weak but significant correlation between text-based sentiment analysis on the text acquired via thinking aloud and SUS scores as well as a weak positive correlation between the proportion of neutrality in users’ voice and SUS scores. However, for the majority of the output of emotion recognition software, we could not find any significant results. Emotion metrics could not be used to successfully differentiate between two websites of varying usability. Regression models, either unimodal or multimodal could not predict usability metrics. We discuss reasons for these results and how to continue research with more sophisticated methods.


2021 ◽  
Author(s):  
Puneet Kumar ◽  
Vedanti Khokher ◽  
Yukti Gupta ◽  
Balasubramanian Raman

2021 ◽  
Author(s):  
Yibo Huang ◽  
Hongqian Wen ◽  
Linbo Qing ◽  
Rulong Jin ◽  
Leiming Xiao

Sign in / Sign up

Export Citation Format

Share Document