Compactness of Kähler metrics with bounds on Ricci curvature and $${\mathcal {I}}$$ functional

Author(s):  
Xiuxiong Chen ◽  
Tamás Darvas ◽  
Weiyong He
2018 ◽  
Vol 154 (8) ◽  
pp. 1593-1632 ◽  
Author(s):  
Eleonora Di Nezza ◽  
Vincent Guedj

Let $Y$ be a compact Kähler normal space and let $\unicode[STIX]{x1D6FC}\in H_{\mathit{BC}}^{1,1}(Y)$ be a Kähler class. We study metric properties of the space ${\mathcal{H}}_{\unicode[STIX]{x1D6FC}}$ of Kähler metrics in $\unicode[STIX]{x1D6FC}$ using Mabuchi geodesics. We extend several results of Calabi, Chen, and Darvas, previously established when the underlying space is smooth. As an application, we analytically characterize the existence of Kähler–Einstein metrics on $\mathbb{Q}$-Fano varieties, generalizing a result of Tian, and illustrate these concepts in the case of toric varieties.


2010 ◽  
Vol 84 (2) ◽  
pp. 427-453 ◽  
Author(s):  
Valentino Tosatti

Sign in / Sign up

Export Citation Format

Share Document