scholarly journals The in vitro stabilising effect of polyetheretherketone cages versus a titanium cage of similar design for anterior lumbar interbody fusion

2005 ◽  
Vol 14 (8) ◽  
pp. 752-758 ◽  
Author(s):  
M. Spruit ◽  
R. G. Falk ◽  
L. Beckmann ◽  
T. Steffen ◽  
R. M. Castelein
2006 ◽  
Vol 5 (4) ◽  
pp. 330-335 ◽  
Author(s):  
Jason Moore ◽  
Narayan Yoganandan ◽  
Frank A. Pintar ◽  
Jason Lifshutz ◽  
Dennis J. Maiman

Object The aim of this study was to determine the in vitro biomechanical responses of lumbar spinal segments after implantation of tapered cages. Methods Range of motion (ROM)– and stiffness-related data were determined in 10 human cadaveric T12–S1 columns subjected to flexion, extension, and lateral bending modes before and after anterior lumbar interbody fusion in which stand-alone LT-CAGE devices were used. The overall column showed no significant changes in ROM or stiffness. At the instrumented level, stiffness increased significantly (p < 0.05) in flexion and lateral bending modes. Indications of instability in extension were present, but these values were not statistically significant. There was no evidence of adjacent-level instability at any level in any mode, except for the segment superior to the fixation level in flexion; here there was a significant increase in ROM (p < 0.05) and a decrease in stiffness. Conclusions The anatomical conformity and bilateral placement of cages provide ample stability and rigidity at the treated level, comparable to that of other cage systems. Because hypermobility is traditionally related to early degenerative changes, the present results appear to suggest that cages do not significantly contribute to such alterations.


2010 ◽  
Vol 12 (1) ◽  
pp. 82-87 ◽  
Author(s):  
Avraam Ploumis ◽  
Chunhui Wu ◽  
Amir Mehbod ◽  
Gustav Fischer ◽  
Antonio Faundez ◽  
...  

Object Transforaminal lumbar interbody fusion (TLIF) is a popular fusion technique for treating chronic low-back pain. In cases of interbody nonfusion, revision techniques for TLIF include anterior lumbar interbody fusion (ALIF) approaches. Biomechanical data of the revision techniques are not available. The purpose of this study was to compare the immediate construct stability, in terms of range of motion (ROM) and neutral zone (NZ), of a revision ALIF procedure for an unsuccessful TLIF. An in vitro biomechanical comparison of TLIF and its ALIF revision procedure was conducted on cadaveric nonosteoporotic human spine segments. Methods Twelve cadaveric lumbar motion segments with normal bone mineral density were loaded in unconstrained axial torsion, lateral bending, and flexion-extension under 0.05 Hz and ± 6-nm sinusoidal waveform. The specimens underwent TLIF (with posterior pedicle fixation) and anterior ALIF (with intact posterior fixation). Multidirectional flexibility testing was conducted following each step. The ROM and NZ data were measured and calculated for each test. Results Globally, the TLIF and revision ALIF procedures significantly reduced ROM and NZ compared with that of the intact condition. The revision ALIF procedures achieved similar ROM as the TLIF procedure. Conclusions Revision ALIF maintained biomechanical stability of TLIF in nonosteoporotic spines. Revision ALIF can be performed without sacrificing spinal stability in cases of intact posterior instrumentation.


Spine ◽  
2002 ◽  
Vol 27 (9) ◽  
pp. 923-928 ◽  
Author(s):  
Ranjith R. Kuzhupilly ◽  
Isador H. Lieberman ◽  
Robert F. McLain ◽  
Antonio Valdevit ◽  
Helen Kambic ◽  
...  

2006 ◽  
Vol 21 (5) ◽  
pp. 435-442 ◽  
Author(s):  
A. Kettler ◽  
T. Niemeyer ◽  
L. Issler ◽  
U. Merk ◽  
M. Mahalingam ◽  
...  

2007 ◽  
Vol 7 (3) ◽  
pp. 332-335 ◽  
Author(s):  
Wesley M. Johnson ◽  
Tann A. Nichols ◽  
Deepika Jethwani ◽  
Bernard H. Guiot

Object Anterior lumbar interbody fusion (ALIF) is often supplemented with instrumentation to increase stability in the spine. If anterior plate fixation provided the same stability as posterior pedicle screw fixation (PSF), then a second approach and its associated morbidity could be avoided. Methods Seven human cadaveric L4–5 spinal segments were tested under three conditions: ALIF with an anterior plate, ALIF with an anterolateral plate, and ALIF supplemented by PSF. Range of motion (ROM) was calculated for flexion/extension, lateral bending, and axial torsion and compared among the three configurations. Results There were no significant differences in ROM during flexion/extension, lateral bending, or axial torsion among any of the three instrumentation configurations. Conclusions The addition of an anterior plate or posterior PS/rod instrumentation following ALIF provides substantially equivalent biomechanical stability. Additionally, the position of the plate system, either anterior or anterolateral, does not significantly affect the stability gained.


Sign in / Sign up

Export Citation Format

Share Document