lateral bending
Recently Published Documents


TOTAL DOCUMENTS

456
(FIVE YEARS 128)

H-INDEX

36
(FIVE YEARS 3)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Guangwei Zhou ◽  
Changzhao Qian ◽  
Changping Chen

As a new type of composite bridge, the dynamic structural characteristics of a tensioned string bridge need to be deeply studied. In this paper, based on the structural characteristics of a tensioned string bridge, the Rayleigh method is used to derive formulas for calculating the frequencies of vertical, antisymmetric and lateral bending vibrations. The characteristics of the vertical and lateral bending vibration frequencies are summarized. The fundamental frequencies of the antisymmetric vertical bending and lateral bending of the tensioned string bridge are the same as that of the single-span beam under the corresponding constraint conditions. The shape and physical characteristics of the main cable have no effect on the frequency. The vertical bending symmetrical vibration frequency of the tensioned string bridge is greater than the corresponding symmetrical vibration frequency of the simply supported beam. The shape and physical characteristics of the main cable have a greater impact on the vertical bending symmetrical vibration frequency than the lateral bending frequency, and the vertical bending symmetrical vibration frequency increases with an increasing rise-to-span ratio. The tension force of the main cable has no influence on the frequency of tensioned string bridges. The first-order frequency of the tensioned string bridge is generally the vertical bending symmetrical vibration frequency. By adopting a tensioned string bridge structure, the fundamental frequency of a structure can be greatly increased, thereby increasing the overall rigidity of the structure. Finally, an engineering example is applied with the finite element parameter analysis method to study the vibration frequency characteristics of the tensioned string bridge, which verifies the correctness of the formula derived in this paper. The finite element analysis results show that the errors between the derived formula in this paper and the finite element calculation results are less than 2%, indicating that the formula derived in this paper has high calculation accuracy and can meet the calculation accuracy requirements of engineering applications.


Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 385
Author(s):  
Masoud Abdollahi ◽  
Pranav Madhav Kuber ◽  
Michael Shiraishi ◽  
Rahul Soangra ◽  
Ehsan Rashedi

Background: A stroke often bequeaths surviving patients with impaired neuromusculoskeletal systems subjecting them to increased risk of injury (e.g., due to falls) even during activities of daily living. The risk of injuries to such individuals can be related to alterations in their movement. Using inertial sensors to record the digital biomarkers during turning could reveal the relevant turning alterations. Objectives: In this study, movement alterations in stroke survivors (SS) were studied and compared to healthy individuals (HI) in the entire turning task due to its requirement of synergistic application of multiple bodily systems. Methods: The motion of 28 participants (14 SS, 14 HI) during turning was captured using a set of four Inertial Measurement Units, placed on their sternum, sacrum, and both shanks. The motion signals were segmented using the temporal and spatial segmentation of the data from the leading and trailing shanks. Several kinematic parameters, including the range of motion and angular velocity of the four body segments, turning time, the number of cycles involved in the turning task, and portion of the stance phase while turning, were extracted for each participant. Results: The results of temporal processing of the data and comparison between the SS and HI showed that SS had more cycles involved in turning, turn duration, stance phase, range of motion in flexion–extension, and lateral bending for sternum and sacrum (p-value < 0.035). However, HI exhibited larger angular velocity in flexion–extension for all four segments. The results of the spatial processing, in agreement with the prior method, showed no difference between the range of motion in flexion–extension of both shanks (p-value > 0.08). However, it revealed that the angular velocity of the shanks of leading and trailing legs in the direction of turn was more extensive in the HI (p-value < 0.01). Conclusions: The changes in upper/lower body segments of SS could be adequately identified and quantified by IMU sensors. The identified kinematic changes in SS, such as the lower flexion–extension angular velocity of the four body segments and larger lateral bending range of motion in sternum and sacrum compared to HI in turning, could be due to the lack of proper core stability and effect of turning on vestibular system of the participants. This research could facilitate the development of a targeted and efficient rehabilitation program focusing on the affected aspects of turning movement for the stroke community.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Chia-En Wong ◽  
Hsuan-Teh Hu ◽  
Li-Hsing Kao ◽  
Che-Jung Liu ◽  
Ke-Chuan Chen ◽  
...  

Abstract Background Semi-rigid lumbar fusion offers a compromise between pedicle screw-based rigid fixation and non-instrumented lumbar fusion. However, the use of semi-rigid interspinous stabilization (SIS) with interspinous spacer and ligamentoplasty and semi-rigid posterior instrumentation (SPI) to assist interbody cage as fusion constructs remained controversial. The purpose of this study is to investigate the biomechanical properties of semi-rigidly stabilized lumbar fusion using SIS or SPI and their effect on adjacent levels using finite element (FE) method. Method Eight FE models were constructed to simulate the lumbosacral spine. In the non-fusion constructs, semi-rigid stabilization with (i) semi-rigid interspinous spacer and artificial ligaments (PD-SIS), and (ii) PI with semi-rigid rods were simulated (PD + SPI). For fusion constructs, the spinal models were implanted with (iii) PEEK cage only (Cage), (iv) PEEK cage and SIS (Cage+SIS), (v) PEEK cage and SPI (Cage+SPI), (vi) PEEK cage and rigid PI (Cage+PI). Result The comparison of flexion-extension range of motion (ROM) in the operated level showed the difference between Cage+SIS, Cage+SPI, and Cage+PI was less than 0.05 degree. In axial rotation, ROM of Cage+SIS were greater than Cage+PI by 0.81 degree. In the infrajacent level, while Cage+PI increased the ROM by 24.1, 27,7, 25.9, and 10.3% and Cage+SPI increased the ROM by 26.1, 30.0, 27.1, and 10.8% in flexion, extension, lateral bending and axial rotation respectively, Cage+SIS only increased the ROM by 3.6, 2.8, and 11.2% in flexion, extension, and lateral bending and reduced the ROM by 1.5% in axial rotation. The comparison of the von Mises stress showed that SIS reduced the adjacent IVD stress by 9.0%. The simulation of the strain energy showed a difference between constructs less than 7.9%, but all constructs increased the strain energy in the infradjacent level. Conclusion FE simulation showed semi-rigid fusion constructs including Cage+SIS and Cage+SPI can provide sufficient stabilization and flexion-extension ROM reduction at the fusion level. In addition, SIS-assisted fusion resulted in less hypermobility and less von Mises stress in the adjacent levels. However, SIS-assisted fusion had a disadvantage of less ROM reduction in lateral bending and axial rotation. Further clinical studies are warranted to investigate the clinical efficacy and safety of semi-rigid fusions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Feng Zhang ◽  
Jiantao Liu ◽  
Xijing He ◽  
Rui Wang ◽  
Teng Lu ◽  
...  

Purpose. This was an in vivo study to develop a novel movable lumbar artificial vertebral complex (MLVC) in a goat model. The purpose of this study was to evaluate clinical and biomechanical characteristics of MLVC and to provide preclinical data for a clinical trial in the future. Methods. According to the preoperative X-ray and CT scan data of the lumbar vertebrae, 3D printing of a MLVC was designed and implanted in goats. The animals were randomly divided into three groups: intact, fusion, and nonfusion. In the intact group, only the lumbar vertebrae and intervertebral discs were exposed during surgery. Both the fusion and nonfusion groups underwent resection of the lumbar vertebral body and the adjacent intervertebral disc. Titanium cages and lateral plates were implanted in the fusion group. MLVC was implanted in the nonfusion group. All groups were evaluated by CT scan and micro-CT to observe the spinal fusion and tested using the mechanical tester at 6 months after operation. Results. The imaging results showed that with the centrum, the artificial endplates of the titanium cage and MLVC formed compact bone trabeculae. In the in vitro biomechanical test, the average ROM of L3-4 and L4-5 for the nonfusion group was found to be similar to that of the intact group and significantly higher in comparison to that of the fusion group ( P < 0.05 ). The average ROM of flexion, extension, lateral bending, and rotation in the L2-3 intervertebral space significantly increased in the fusion group compared with the intact group and the nonfusion group ( P < 0.001 ). There were no significant differences in flexion, extension, lateral bending, and rotation between the nonfusion and intact groups ( P > 0.05 ). The average ROM of flexion, extension, lateral bending, and rotation in the L2-5 intervertebral space was not significantly different between the intact group, the fusion group, and the nonfusion group, and there was no statistical significance ( P > 0.05 ). HE staining results did not find any metal and polyethylene debris caused by abrasion. Conclusion. In vivo MLVC can not only reconstruct the height and stability of the centrum of the operative segment but also retain the movement of the corresponding segment.


2021 ◽  
pp. 1-9

OBJECTIVE Low fusion rates and cage subsidence are limitations of lumbar fixation with stand-alone interbody cages. Various approaches to interbody cage placement exist, yet the need for supplemental posterior fixation is not clear from clinical studies. Therefore, as prospective clinical studies are lacking, a comparison of segmental kinematics, cage properties, and load sharing on vertebral endplates is needed. This laboratory investigation evaluates the mechanical stability and biomechanical properties of various interbody fixation techniques by performing cadaveric and finite element (FE) modeling studies. METHODS An in vitro experiment using 7 fresh-frozen human cadavers was designed to test intact spines with 1) stand-alone lateral interbody cage constructs (lateral interbody fusion, LIF) and 2) LIF supplemented with posterior pedicle screw-rod fixation (360° constructs). FE and kinematic data were used to validate a ligamentous FE model of the lumbopelvic spine. The validated model was then used to evaluate the stability of stand-alone LIF, transforaminal lumbar interbody fusion (TLIF), and anterior lumbar interbody fusion (ALIF) cages with and without supplemental posterior fixation at the L4–5 level. The FE models of intact and instrumented cases were subjected to a 400-N compressive preload followed by an 8-Nm bending moment to simulate physiological flexion, extension, bending, and axial rotation. Segmental kinematics and load sharing at the inferior endplate were compared. RESULTS The FE kinematic predictions were consistent with cadaveric data. The range of motion (ROM) in LIF was significantly lower than intact spines for both stand-alone and 360° constructs. The calculated reduction in motion with respect to intact spines for stand-alone constructs ranged from 43% to 66% for TLIF, 67%–82% for LIF, and 69%–86% for ALIF in flexion, extension, lateral bending, and axial rotation. In flexion and extension, the maximum reduction in motion was 70% for ALIF versus 81% in LIF for stand-alone cases. When supplemented with posterior fixation, the corresponding reduction in ROM was 76%–87% for TLIF, 86%–91% for LIF, and 90%–92% for ALIF. The addition of posterior instrumentation resulted in a significant reduction in peak stress at the superior endplate of the inferior segment in all scenarios. CONCLUSIONS Stand-alone ALIF and LIF cages are most effective in providing stability in lateral bending and axial rotation and less so in flexion and extension. Supplemental posterior instrumentation improves stability for all interbody techniques. Comparative clinical data are needed to further define the indications for stand-alone cages in lumbar fusion surgery.


2021 ◽  
pp. 1-9

OBJECTIVE Excessive stress and motion at the L5–S1 level can lead to degenerative changes, especially in patients with posterior instrumentation suprajacent to L5. Attention has turned to utilization of L5–S1 anterior lumbar interbody fusion (ALIF) to stabilize the lumbosacral junction. However, questions remain regarding the effectiveness of stand-alone ALIF in the setting of prior posterior instrumented fusions terminating at L5. The purpose of this study was to assess the biomechanical stability of an L5–S1 ALIF with increasing lengths of posterior thoracolumbar constructs. METHODS Seven human cadaveric spines (T9–sacrum) were instrumented with pedicle screws from T10 to L5 and mounted to a 6 degrees-of-freedom robot. Posterior fusion construct lengths (T10–L5, T12–L5, L2–5, and L4–5) were instrumented to each specimen, and torque-fusion level relationships were determined for each construct in flexion-extension, axial rotation, and lateral bending. A stand-alone L5–S1 ALIF was then instrumented, and L5–S1 motion was measured as increasing pure moments (2 to 12 Nm) were applied. Motion reduction was calculated by comparing L5–S1 motion across the ALIF and non-ALIF states. RESULTS The average motion at L5–S1 in axial rotation, flexion-extension, and lateral bending was assessed for each fusion construct with and without ALIF. After adding ALIF to a posterior fusion, L5–S1 motion was significantly reduced relative to the non-ALIF state in all but one fused surgical condition (p < 0.05). Longer fusions with ALIF produced larger L5–S1 motions, and in some cases resulted in motions higher than native state motion. CONCLUSIONS Posterior fusion constructs up to L4–5 could be appropriately stabilized by a stand-alone L5–S1 ALIF when using a nominal threshold of 80% reduction in native motion as a potential positive indicator of fusion. The results of this study allow conclusions to be drawn from a biomechanical standpoint; however, the clinical implications of these data are not well defined. These findings, when taken in appropriate clinical context, can be used to better guide clinicians seeking to treat L5–S1 pathology in patients with prior posterior thoracolumbar constructs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260414
Author(s):  
Matthias K. Jung ◽  
Gregor V. R. von Ehrlich-Treuenstätt ◽  
Andreas L. Jung ◽  
Holger Keil ◽  
Paul A. Grützner ◽  
...  

Background Along with the growing geriatric population, the number of odontoid fractures is steadily increasing. However, the effectiveness of immobilizing geriatric odontoid fractures using a cervical collar has been questioned. The aim of the present study is to analyze the physiological and pathological motion in odontoid fractures and to assess limitation of motion in the cervical spine when applying a cervical collar. Methods Motion analysis was performed with wireless motion tracker on unfixed geriatric human cadavers. First, a new geriatric type II odontoid fracture model was developed. In this model, the type II odontoid fracture is operated via a transoral approach. The physiological and pathological flexion and lateral bending of the cervical spine resulting from this procedure was measured. The resulting motion after external stabilization using a cervical collar was analyzed. Results The new geriatric type II odontoid fracture model was successfully established using seven unfixed human cadavers. The pathological flexion of the cervical spine was significantly increased compared to the physiological flexion (p = 0.027). Furthermore, the flexion was significantly reduced when a cervical collar was applied. In case of flexion the mean remaining motion was significantly reduced (p = 0.0017) from 41° to 14°. For lateral bending the mean remaining motion was significantly reduced (p = 0.0137) from 48° to 18°. Conclusions In case of type II odontoid fracture, flexion and lateral bending of the cervical spine are increased due to spinal instability. Thus, if an odontoid fracture is suspected in geriatric patients, the application of a cervical collar should always be considered since external stabilization can significantly reduce flexion and lateral bending.


Author(s):  
Matteo Panico ◽  
Tito Bassani ◽  
Tomaso Maria Tobia Villa ◽  
Fabio Galbusera

Simplified loading conditions such as pure moments are frequently used to compare different instrumentation techniques to treat spine disorders. The purpose of this study was to determine if the use of realistic loading conditions such as muscle forces can alter the stresses in the implants with respect to pure moment loading. A musculoskeletal model and a finite element model sharing the same anatomy were built and validated against in vitro data, and coupled in order to drive the finite element model with muscle forces calculated by the musculoskeletal one for a prescribed motion. Intact conditions as well as a L1-L5 posterior fixation with pedicle screws and rods were simulated in flexion-extension and lateral bending. The hardware stresses calculated with the finite element model with instrumentation under simplified and realistic loading conditions were compared. The ROM under simplified loading conditions showed good agreement with in vitro data. As expected, the ROMs between the two types of loading conditions showed relatively small differences. Realistic loading conditions increased the stresses in the pedicle screws and in the posterior rods with respect to simplified loading conditions; an increase of hardware stresses up to 40 MPa in extension for the posterior rods and 57 MPa in flexion for the pedicle screws were observed with respect to simplified loading conditions. This conclusion can be critical for the literature since it means that previous models which used pure moments may have underestimated the stresses in the implants in flexion-extension and in lateral bending.


2021 ◽  
Vol 11 (21) ◽  
pp. 10486
Author(s):  
Hung-Wen Wei ◽  
Shao-Ming Chuang ◽  
Chen-Sheng Chen

Minimally invasive decompression is generally employed for treating lumbar spinal stenosis; however, it results in weakened spinal stability. To augment spinal stability, a new interspinous process device (NIPD) was developed in this study. The biomechanical features of the NIPD were evaluated in this study. Three finite-element (FE) models of the entire lumbar spine were implemented to perform biomechanical analysis: the intact, defect (DEF), and NIPD models. The DEF model was considered for lumbar spines with bilateral laminotomies and partial discectomy at L3–L4. Range of motion (ROM), disc stress, and facet joint contact force were evaluated in flexion, extension, torsion, and lateral bending in the three FE models. The results indicated that ROM in the extension increased by 23% in the DEF model but decreased by 23% in the NIPD model. In the NIPD model, the cephalic adjacent disc stress in flexion and extension was within 5%, and negligible changes were noted in the facet joint contact force for torsion and lateral bending. Thus, the NIPD offers superior spinal stability and causes only a minor change in cephalic adjacent disc stress in flexion and extension during the bilateral laminotomy and partial discectomy of the lumbar spine. However, the NIPD has a minor influence on the ROM and facet joint force for lateral bending and torsion.


Author(s):  
Luis Fernando Nicolini ◽  
Philipp Kobbe ◽  
Jana Seggewiß ◽  
Johannes Greven ◽  
Marx Ribeiro ◽  
...  

Abstract Purpose There is a paucity of studies on new vertebral body tethering (VBT) surgical constructs especially regarding their potentially motion-preserving ability. This study analyses their effects on the ROM of the spine. Methods Human spines (T10-L3) were tested under pure moment in four different conditions: (1) native, (2) instrumented with one tether continuously connected in all vertebrae from T10 to L3, (3) additional instrumented with a second tether continuously connected in all vertebrae from T11 to L3, and (4) instrumented with one tether and one titanium rod (hybrid) attached to T12, L1 and L2. The instrumentation was inserted in the left lateral side. The intersegmental ROM was evaluated using a magnetic tracking system, and the medians were analysed. Please check and confirm the author names and initials are correct. Also, kindly confirm the details in the metadata are correct. The mentioned information is correct Results Compared to the native spine, the instrumented spine presented a reduction of less than 13% in global ROM considering flexion–extension and axial rotation. For left lateral bending, the median global ROM of the native spine (100%) significantly reduced to 74.6%, 66.4%, and 68.1% after testing one tether, two tethers and the hybrid construction, respectively. In these cases, the L1-L2 ROM was reduced to 68.3%, 58.5%, and 38.3%, respectively. In right lateral bending, the normalized global ROM of the spine with one tether, two tethers and the hybrid construction was 58.9%, 54.0%, and 56.6%, respectively. Considering the same order, the normalized L1-L2 ROM was 64.3%, 49.9%, and 35.3%, respectively. Conclusion The investigated VBT techniques preserved global ROM of the spine in flexion–extension and axial rotation while reduced the ROM in lateral bending.


Sign in / Sign up

Export Citation Format

Share Document