Image spam filtering using convolutional neural networks

2018 ◽  
Vol 22 (5-6) ◽  
pp. 1029-1037 ◽  
Author(s):  
Fan Aiwan ◽  
Yang Zhaofeng

Unsolicited visual data is undesirable in any form. The art of hiding malicious content in images and adding them as attachments to electronic mails has become a popular nuisance. In recent years, attackers have developed various new techniques to evade traditional spam classification systems. Text-based spam classification has been in focus for a long time and, researchers have successfully created a prodigal system for identifying spam text in electronic mails using Optical Character Recognition technology. In the last decade, extensive work has been performed to tackle image spam but with unsatisfactory results. Various algorithms and data augmentation techniques are used today to develop an optimal model for image spam recognition. Many of these proposed systems come close to the ideal system but do not provide 100 percent accuracy. This paper highlights the role of three popular techniques in image spam filtering. We discuss the importance and application of Optical Character Recognition, Support Vector Machines and, Artificial Neural Networks in unsolicited visual data filtering. This paper sheds light on the algorithms of these techniques. We provide a comparison of their accuracy, which helps us draw useful insights for developing a robust unsolicited visual data classification system. This paper aims to bring clarity regarding the feasibility of using these techniques to develop an unsolicited visual data filtering system. This paper records that the most favourable results are obtained using Artificial Neural Networks.


2020 ◽  
Vol 29 (3) ◽  
pp. 103-117
Author(s):  
Tazmina Sharmin ◽  
Fabio Di Troia ◽  
Katerina Potika ◽  
Mark Stamp

2018 ◽  
Author(s):  
George Symeonidis ◽  
Peter P. Groumpos ◽  
Evangelos Dermatas

2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


Author(s):  
Edgar Medina ◽  
Roberto Campos ◽  
Jose Gabriel R. C. Gomes ◽  
Mariane R. Petraglia ◽  
Antonio Petraglia

Sign in / Sign up

Export Citation Format

Share Document