An experimental study of failure and softening in sand under three-dimensional stress condition

2008 ◽  
Vol 10 (3) ◽  
pp. 187-195 ◽  
Author(s):  
De’an Sun ◽  
Wenxiong Huang ◽  
Yangping Yao
Author(s):  
Sheng Yu-ming ◽  
Li Chao ◽  
Xia Ming-yao ◽  
Zou Jin-feng

Abstract In this study, elastoplastic model for the surrounding rock of axisymmetric circular tunnel is investigated under three-dimensional (3D) principal stress states. Novel numerical solutions for strain-softening surrounding rock were first proposed based on the modified 3D Hoek–Brown criterion and the associated flow rule. Under a 3D axisymmetric coordinate system, the distributions for stresses and displacement can be effectively determined on the basis of the redeveloped stress increment approach. The modified 3D Hoek–Brown strength criterion is also embedded into finite element software to characterize the yielding state of surrounding rock based on the modified yield surface and stress renewal algorithm. The Euler implicit constitutive integral algorithm and the consistent tangent stiffness matrix are reconstructed in terms of the 3D Hoek–Brown strength criterion. Therefore, the numerical solutions and finite element method (FEM) models for the deep buried tunnel under 3D principal stress condition are presented, so that the stability analysis of surrounding rock can be conducted in a direct and convenient way. The reliability of the proposed solutions was verified by comparison of the principal stresses obtained by the developed numerical approach and FEM model. From a practical point of view, the proposed approach can also be applied for the determination of ground response curve of the tunnel, which shows a satisfying accuracy compared with the measuring data.


This paper describes an experimental study of the drag of two- and three-dimensional bluff obstacles of various cross-stream shapes when towed through a fluid having a stable, linear density gradient with Brunt-Vaisala frequency, N . Drag measurements were made directly using a force balance, and effects of obstacle blockage ( h / D , where h and D are the obstacle height and the fluid depth, respectively) and Reynolds number were effectively eliminated. It is shown that even in cases where the downstream lee waves and propagating columnar waves are of large amplitude, the variation of drag with the parameter K ( = ND /π U ) is qualitatively close to that implied by linear theories, with drag minima existing at integral values of K . Under certain conditions large, steady, periodic variations in drag occur. Simultaneous drag measurements and video recordings of the wakes show that this unsteadiness is linked directly with time-variations in the lee and columnar wave amplitudes. It is argued that there are, therefore, situations where the inviscid flow is always unsteady even for large times; the consequent implications for atmospheric motions are discussed.


AAPG Bulletin ◽  
2012 ◽  
Vol 96 (5) ◽  
pp. 773-788 ◽  
Author(s):  
Jianzhao Yan ◽  
Xiaorong Luo ◽  
Weimin Wang ◽  
Renaud Toussaint ◽  
Jean Schmittbuhl ◽  
...  

1996 ◽  
Vol 315 ◽  
pp. 31-49 ◽  
Author(s):  
G. R. Grek ◽  
V. V. Kozlov ◽  
S. V. Titarenko

An experimental study of the effect of riblets on three-dimensional nonlinear structures, the so-called Λ-vortices on laminar-turbulent transition showed that riblets delay the transformation of the Λ-vortices into turbulent spots and shift the point of transition downstream. This result is opposite to the negative influence of such ribbed surfaces on two-dimensional linear Tollmien-Schlichting waves (the linear stage of transition). Thus, the ribbed surface influences laminar-turbulent transition structures differently: a negative influence on the linear-stage transition structures and a positive influence on the nonlinear-stage transition structures. It is demonstrated that transition control by means of riblets requires special attention to be paid to the choice of their location, taking into account the stage of transition.


Sign in / Sign up

Export Citation Format

Share Document