flow rule
Recently Published Documents


TOTAL DOCUMENTS

633
(FIVE YEARS 149)

H-INDEX

38
(FIVE YEARS 5)

2022 ◽  
Vol 121 ◽  
pp. 104320
Author(s):  
Mingju Zhang ◽  
Qiguang Di ◽  
Pengfei Li ◽  
Yingjie Wei ◽  
Fan Wang

Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 160
Author(s):  
Youngjun Kim ◽  
Jinwoo Park ◽  
Yeunwoong Kyung

Due to the dynamic mobility feature, the proactive flow rule cache method has become one promising solution in software-defined networking (SDN)-based access networks to reduce the number of flow rule installation procedures between the forwarding nodes and SDN controller. However, since there is a flow rule cache limit for the forwarding node, an efficient flow rule cache strategy is required. To address this challenge, this paper proposes the mobility-aware hybrid flow rule cache scheme. Based on the comparison between the delay requirement of the incoming flow and the response delay of the controller, the proposed scheme decides to install the flow rule either proactively or reactively for the target candidate forwarding nodes. To find the optimal number of proactive flow rules considering the flow rule cache limits, an integer linear programming (ILP) problem is formulated and solved using the heuristic method. Extensive simulation results demonstrate that the proposed scheme outperforms the existing schemes in terms of the flow table utilization ratio, flow rule installation delay, and flow rules hit ratio under various settings.


2022 ◽  
Vol 119 ◽  
pp. 104202 ◽  
Author(s):  
Pengfei Li ◽  
Yingjie Wei ◽  
Mingju Zhang ◽  
Qingfei Huang ◽  
Fan Wang

2021 ◽  
Vol 3 (1) ◽  
pp. 14-45
Author(s):  
Mohammad Nurul Islam ◽  
Carthigesu T. Gnanendran ◽  
Siva T. Sivakumar

The Nerang Broadbeach Roadway (NBR) embankment in Australia is founded on soft clay deposits. The embankment sections were preloaded and surcharged-preloaded to limit the post-construction deformation and to avoid stability failure. In this paper, we discuss the NBR embankment’s geology, geotechnical properties of the subsurface, and long-term field monitoring data from settlement plates and piezometers. We demonstrate a comparison of cone penetration test (CPT) and piezo cone dissipation test (CPT-u) interpreted geotechnical properties and the NBR embankment’s foundation stratification with laboratory and field measured data. We also developed two elasto-viscoplastic (EVP) models for long-term performance prediction of the NBR embankment. In this regard, we considered both the associated and the non-associated flow rule in the EVP model formulation to assess the flow rule effect of soft clay. We also compared EVP model predictions with the Modified Cam Clay (MCC) model to evaluate the effect of viscous behavior of natural Estuarine clay. Both EVP models require six parameters, and five of them are similar to the MCC model. We used the secondary compression index of clay in the EVP model formulations to include the viscous response of clay. We obtained numerical models’ parameters from laboratory tests and interpretation of CPT and CPTu data. We observed that the EVP models predicted well compared with the MCC model because of the inclusion of soft clay’s viscosity in the EVP models. Moreover, the flow rule effect in the embankment’s performance predictions was noticeable. The non-associated flow rule EVP model predicted the field monitoring settlement and pore pressure better compared to the MCC model and the associated flow EVP model.


2021 ◽  
Vol 12 (1) ◽  
pp. 85
Author(s):  
Jinwang Li ◽  
Xiufeng He ◽  
Caihua Shen ◽  
Xiangtian Zheng

Past studies on deep-lying tunnels under the assumption of plane strain have generally neglected the influence of intermediate principal stress even though this affects the surrounding rocks in the plastic zone. This study proposes a finite difference method to compute the stress strain plastic region and displacement of a tunnel based on the Drucker–Prager (D–P) yield criterion and non-associated flow rule and considering the influences of intermediate principal stress and the strain-softening behavior of surrounding rock. The computed results were compared with those of other well-known solutions and the accuracy and validity of the method were confirmed through some examples. Parameter analysis was conducted to investigate the effects of intermediate principal stress on stress-strain, the plastic region, the ground response curve, and the dilatability of surrounding rock. The results showed that the plastic radius , the residual radius , and radial displacement of surrounding rock first decreased and then increased with increasing intermediate principal stress coefficient b from 0 to 1, with the minimums occurring at b = 0.75. On the contrary, the peak and rate of variation of the dilatancy coefficient first increased and then decreased with increasing b and the dilatancy coefficient gradually transitioned from nonlinear to linear variation. Meanwhile, the inhibition of the plastic radius and radial displacement gradually weakened with increasing support pressure, whereas the dilatancy coefficient of the tunnel opening gradually increased.


2021 ◽  
Vol 9 ◽  
Author(s):  
Shuangshuang Yuan ◽  
Qizhi Zhu ◽  
Wanlu Zhang ◽  
Jin Zhang ◽  
Lunyang Zhao

A micromechanical anisotropic damage model with a non-associated plastic flow rule is developed for describing the true triaxial behaviors of brittle rocks. We combine the Eshelby’s solution to the inclusion problem with the framework of irreversible thermodynamics. The main dissipative mechanisms of inelastic deformation due to the frictional sliding and damage by microcrack propagation are strongly coupled to each other. A Coulomb-type friction criterion is formulated in terms of the local stress applied onto the microcracks as the yielding function. The back-stress term contained in this local stress plays a critical role in describing the material’s hardening/softening behaviors. With a non-associated flow rule, a potential function is involved. Some analytical analysis of the non-associated micromechanical anisotropic damage model are conducted, which are useful for the model parameters calibration. The proposed model is used to simulate the laboratory tests on Westerly granite under true triaxial stresses. Comparing the numerical simulation results provided by the models with associated/non-associated plastic flow rule and experimental results, it is clear that the proposed non-associated model gives a better prediction than the previous associated model.


2021 ◽  
Vol 11 (24) ◽  
pp. 12068
Author(s):  
Ana Alencar ◽  
Rubén Galindo ◽  
Claudio Olalla Marañón

This paper aims to study the bearing capacity of a shallow foundation on rock mass, considering the most usual bridge footing width and adopting a Hoek–Brown material. The dimension of the foundation has been shown to be very significant in soils with linear failure criteria (Mohr–Coulomb envelope), and its study is necessary in the case of non-linear failure criteria, typical of rock masses. Analytical solutions do not allow incorporating this effect. A parametric study by a finite difference method was carried out, studying a wide variety of rock mass through sensitivity analysis of three geotechnical parameters: geological origin of the rock mass (mi), uniaxial compressive strength, and geological strength index. The results obtained by the numerical solution for the Hoek–Brown failure criterion were compared with the analytical results by adopting the classical hypotheses of plane strain conditions, associated flow rule, and weightless rock mass. The variation of the numerical bearing capacity due to the consideration of the self-weight of the rock mass was also analyzed since its influence is conditioned by the volume of ground mobilized and therefore by the width of the foundation. Considering the similarities observed between the numerical and analytical results, a correlation factor function of the self-weight is proposed. It can be used in conjunction with the analytical method, to estimate in a semi-analytical way the bearing capacity of a bridge foundation.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 657
Author(s):  
Hrvoje Smoljanović ◽  
Ivan Balić ◽  
Ante Munjiza ◽  
Viktor Hristovski

This paper presents a computationally efficient numerical model for the analysis of thin shells based on rotation-free triangular finite elements. The geometry of the structure in the vicinity of the observed triangular element is approximated through a controlled domain consisting of nodes of the observed finite element and nodes of three adjacent finite elements between which a second-order spatial polynomial is defined. The model considers large displacements, large rotations, small strains, and material and geometrical nonlinearity. Material nonlinearity is implemented by considering the von Mises yield criterion and the Levi-Mises flow rule. The model uses an explicit time integration scheme to integrate motion equations but an implicit radial returning algorithm to compute the plastic strain at the end of each time step. The presented numerical model has been embedded in the program Y based on the finite–discrete element method and tested on simple examples. The advantage of the presented numerical model is displayed through a series of analyses where the obtained results are compared with other results presented in the literature.


Sign in / Sign up

Export Citation Format

Share Document