Rotation invariant features for color texture classification and retrieval under varying illumination

2011 ◽  
Vol 16 (1) ◽  
pp. 69-81
Author(s):  
B. Sathyabama ◽  
M. Anitha ◽  
S. Raju ◽  
V. Abhaikumar
2018 ◽  
Vol 31 (10) ◽  
pp. 6393-6400 ◽  
Author(s):  
Farida Ouslimani ◽  
Achour Ouslimani ◽  
Zohra Ameur

2015 ◽  
Vol 132 ◽  
pp. 87-101 ◽  
Author(s):  
Kazim Hanbay ◽  
Nuh Alpaslan ◽  
Muhammed Fatih Talu ◽  
Davut Hanbay ◽  
Ali Karci ◽  
...  

2006 ◽  
Vol 27 (16) ◽  
pp. 1976-1982 ◽  
Author(s):  
S. Arivazhagan ◽  
L. Ganesan ◽  
S. Padam Priyal

2013 ◽  
Vol 46 (8) ◽  
pp. 2103-2116 ◽  
Author(s):  
Rouzbeh Maani ◽  
Sanjay Kalra ◽  
Yee-Hong Yang

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1010
Author(s):  
Claudio Cusano ◽  
Paolo Napoletano ◽  
Raimondo Schettini

In this paper we present T1K+, a very large, heterogeneous database of high-quality texture images acquired under variable conditions. T1K+ contains 1129 classes of textures ranging from natural subjects to food, textile samples, construction materials, etc. T1K+ allows the design of experiments especially aimed at understanding the specific issues related to texture classification and retrieval. To help the exploration of the database, all the 1129 classes are hierarchically organized in 5 thematic categories and 266 sub-categories. To complete our study, we present an evaluation of hand-crafted and learned visual descriptors in supervised texture classification tasks.


2014 ◽  
Vol 23 (9) ◽  
pp. 3751-3761 ◽  
Author(s):  
Jarbas Joaci de Mesquita Sa Junior ◽  
Paulo Cesar Cortez ◽  
Andre Ricardo Backes

Sign in / Sign up

Export Citation Format

Share Document