A three-term derivative-free projection method for nonlinear monotone system of equations

CALCOLO ◽  
2015 ◽  
Vol 53 (3) ◽  
pp. 427-450 ◽  
Author(s):  
J. K. Liu ◽  
S. J. Li
Author(s):  
Mompati Koorapetse ◽  
P Kaelo ◽  
S Kooepile-Reikeletseng

In this paper, a new modified Perry-type derivative-free projection method for solving large-scale nonlinear monotone equations is presented. The method is developed by combining a modified Perry's conjugate gradient method with the hyperplane projection technique. Global convergence and numerical results of the proposed method are established. Preliminary numerical results show that the proposed method is promising and efficient compared to some existing methods in the literature.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mohammed Yusuf Waziri ◽  
Kabiru Ahmed ◽  
Abubakar Sani Halilu ◽  
Aliyu Mohammed Awwal

<p style='text-indent:20px;'>By exploiting the idea employed in the spectral Dai-Yuan method by Xue et al. [IEICE Trans. Inf. Syst. 101 (12)2984-2990 (2018)] and the approach applied in the modified Hager-Zhang scheme for nonsmooth optimization [PLos ONE 11(10): e0164289 (2016)], we develop a Dai-Yuan type iterative scheme for convex constrained nonlinear monotone system. The scheme's algorithm is obtained by combining its search direction with the projection method [Kluwer Academic Publishers, pp. 355-369(1998)]. One of the new scheme's attribute is that it is derivative-free, which makes it ideal for solving non-smooth problems. Furthermore, we demonstrate the method's application in image de-blurring problems by comparing its performance with a recent effective method. By employing mild assumptions, global convergence of the scheme is determined and results of some numerical experiments show the method to be favorable compared to some recent iterative methods.</p>


Mathematics ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 637 ◽  
Author(s):  
Mozafar Rostami ◽  
Taher Lotfi ◽  
Ali Brahmand

Derivative-free schemes are a class of competitive methods since they are one remedy in cases at which the computation of the Jacobian or higher order derivatives of multi-dimensional functions is difficult. This article studies a variant of Steffensen’s method with memory for tackling a nonlinear system of equations, to not only be independent of the Jacobian calculation but also to improve the computational efficiency. The analytical parts of the work are supported by several tests, including an application in mixed integral equations.


Sign in / Sign up

Export Citation Format

Share Document