nonsmooth optimization
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 68)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
Ali Hakan Tor

The aim of this study is to compare the performance of smooth and nonsmooth optimization solvers from HANSO (Hybrid Algorithm for Nonsmooth Optimization) software. The smooth optimization solver is the implementation of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and the nonsmooth optimization solver is the Hybrid Algorithm for Nonsmooth Optimization. More precisely, the nonsmooth optimization algorithm is the combination of the BFGS and the Gradient Sampling Algorithm (GSA). We use well-known collection of academic test problems for nonsmooth optimization containing both convex and nonconvex problems. The motivation for this research is the importance of the comparative assessment of smooth optimization methods for solving nonsmooth optimization problems. This assessment will demonstrate how successful is the BFGS method for solving nonsmooth optimization problems in comparison with the nonsmooth optimization solver from HANSO. Performance profiles using the number iterations, the number of function evaluations and the number of subgradient evaluations are used to compare solvers.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jia-Tong Li ◽  
Jie Shen ◽  
Na Xu

For CVaR (conditional value-at-risk) portfolio nonsmooth optimization problem, we propose an infeasible incremental bundle method on the basis of the improvement function and the main idea of incremental method for solving convex finite min-max problems. The presented algorithm only employs the information of the objective function and one component function of constraint functions to form the approximate model for improvement function. By introducing the aggregate technique, we keep the information of previous iterate points that may be deleted from bundle to overcome the difficulty of numerical computation and storage. Our algorithm does not enforce the feasibility of iterate points and the monotonicity of objective function, and the global convergence of the algorithm is established under mild conditions. Compared with the available results, our method loosens the requirements of computing the whole constraint function, which makes the algorithm easier to implement.


2021 ◽  
Vol 31 (2) ◽  
pp. 1184-1214
Author(s):  
Boris S. Mordukhovich ◽  
M. Ebrahim Sarabi

Sign in / Sign up

Export Citation Format

Share Document