scholarly journals Error control for statistical solutions of hyperbolic systems of conservation laws

CALCOLO ◽  
2021 ◽  
Vol 58 (2) ◽  
Author(s):  
Jan Giesselmann ◽  
Fabian Meyer ◽  
Christian Rohde

AbstractStatistical solutions have recently been introduced as an alternative solution framework for hyperbolic systems of conservation laws. In this work, we derive a novel a posteriori error estimate in the Wasserstein distance between dissipative statistical solutions and numerical approximations obtained from the Runge-Kutta Discontinuous Galerkin method in one spatial dimension, which rely on so-called regularized empirical measures. The error estimator can be split into deterministic parts which correspond to spatio-temporal approximation errors and a stochastic part which reflects the stochastic error. We provide numerical experiments which examine the scaling properties of the residuals and verify their splitting.

2021 ◽  
Vol 291 ◽  
pp. 110-153
Author(s):  
Shyam Sundar Ghoshal ◽  
Animesh Jana ◽  
Konstantinos Koumatos

2016 ◽  
Vol 24 (1) ◽  
Author(s):  
Elimboto M. Yohana ◽  
Mapundi K. Banda

AbstractA computational investigation of optimal control problems which are constrained by hyperbolic systems of conservation laws is presented. The general framework is to employ the adjoint-based optimization to minimize the cost functional of matching-type between the optimal and the target solution. Extension of the numerical schemes to second-order accuracy for systems for the forward and backward problem are applied. In addition a comparative study of two relaxation approaches as solvers for hyperbolic systems is undertaken. In particular optimal control of the 1-D Riemann problem of Euler equations of gas dynamics is studied. The initial values are used as control parameters. The numerical flow obtained by optimal initial conditions matches accurately with observations.


Sign in / Sign up

Export Citation Format

Share Document