scholarly journals Global optimization of mixed-integer nonlinear programs: A theoretical and computational study

2004 ◽  
Vol 99 (3) ◽  
pp. 563-591 ◽  
Author(s):  
Mohit Tawarmalani ◽  
Nikolaos V. Sahinidis
Author(s):  
Timo Berthold ◽  
Jakob Witzig

The generalization of mixed integer program (MIP) techniques to deal with nonlinear, potentially nonconvex, constraints has been a fruitful direction of research for computational mixed integer nonlinear programs (MINLPs) in the last decade. In this paper, we follow that path in order to extend another essential subroutine of modern MIP solvers toward the case of nonlinear optimization: the analysis of infeasible subproblems for learning additional valid constraints. To this end, we derive two different strategies, geared toward two different solution approaches. These are using local dual proofs of infeasibility for LP-based branch-and-bound and the creation of nonlinear dual proofs for NLP-based branch-and-bound, respectively. We discuss implementation details of both approaches and present an extensive computational study, showing that both techniques can significantly enhance performance when solving MINLPs to global optimality. Summary of Contribution: This original article concerns the advancement of exact general-purpose algorithms for solving one of the largest and most prominent problem classes in optimization, mixed integer nonlinear programs (MINLPs). It demonstrates how methods for conflict analysis that learn from infeasible subproblems can be transferred to nonlinear optimization. Further, it develops theory for how nonlinear dual infeasibility proofs can be derived from a nonlinear relaxation. This paper features a thoroughly computational study regarding the impact of conflict analysis techniques on the overall performance of a state-of-the-art MINLP solver when solving MINLPs to global optimality.


Author(s):  
Felix Hübner ◽  
Patrick Gerhards ◽  
Christian Stürck ◽  
Rebekka Volk

AbstractScheduling of megaprojects is very challenging because of typical characteristics, such as expected long project durations, many activities with multiple modes, scarce resources, and investment decisions. Furthermore, each megaproject has additional specific characteristics to be considered. Since the number of nuclear dismantling projects is expected to increase considerably worldwide in the coming decades, we use this type of megaproject as an application case in this paper. Therefore, we consider the specific characteristics of constrained renewable and non-renewable resources, multiple modes, precedence relations with and without no-wait condition, and a cost minimisation objective. To reliably plan at minimum costs considering all relevant characteristics, scheduling methods can be applied. But the extensive literature review conducted did not reveal a scheduling method considering the special characteristics of nuclear dismantling projects. Consequently, we introduce a novel scheduling problem referred to as the nuclear dismantling project scheduling problem. Furthermore, we developed and implemented an effective metaheuristic to obtain feasible schedules for projects with about 300 activities. We tested our approach with real-life data of three different nuclear dismantling projects in Germany. On average, it took less than a second to find an initial feasible solution for our samples. This solution could be further improved using metaheuristic procedures and exact optimisation techniques such as mixed-integer programming and constraint programming. The computational study shows that utilising exact optimisation techniques is beneficial compared to standard metaheuristics. The main result is the development of an initial solution finding procedure and an adaptive large neighbourhood search with iterative destroy and recreate operations that is competitive with state-of-the-art methods of related problems. The described problem and findings can be transferred to other megaprojects.


2010 ◽  
Vol 36 ◽  
pp. 1153-1160 ◽  
Author(s):  
Hassan Hijazi ◽  
Pierre Bonami ◽  
Gérard Cornuéjols ◽  
Adam Ouorou

Sign in / Sign up

Export Citation Format

Share Document