A characterization of some weighted inequalities for the vector-valued weighted maximal function

2010 ◽  
Vol 26 (11) ◽  
pp. 2191-2198 ◽  
Author(s):  
Cui Lan Wu
1988 ◽  
Vol 18 (3) ◽  
pp. 565-570 ◽  
Author(s):  
O.N. Capri ◽  
C.E. Gutierrez

2020 ◽  
Vol 71 (1) ◽  
pp. 295-320
Author(s):  
Shuichi Sato

Abstract We establish a characterization of the Hardy spaces on the homogeneous groups in terms of the Littlewood–Paley functions. The proof is based on vector-valued inequalities shown by applying the Peetre maximal function.


This paper is concerned with the development of a macroscopic theory of crack growth in fairly brittle materials. Average characteristics of the cracks are described in terms of an additional vector-valued variable in the macroscopic theory, which is determined by an additional momentum-like balance law associated with the rate of increase of the area of the cracks and includes the effects of forces maintaining the crack growth and the inertia of microscopic particles surrounding the cracks. The basic developments represent an idealized characterization of inelastic behaviour in the presence of crack growth, which accounts for energy dissipation without explicit use of macroscopic plasticity effects. A physically plausible constraint on the rate of crack growth is adopted to simplify the theory. To ensure that the results of the theory are physically reasonable, the constitutive response of the dependent variables are significantly restricted by consideration both of the energetic effects and of the microscopic processes that give rise to crack growth. These constitutive developments are in conformity with many of the standard results and observations reported in the literature on fracture mechanics. The predictive nature of the theory is illustrated with reference to two simple examples concerning uniform extensive and compressive straining.


2015 ◽  
Vol 67 (5) ◽  
pp. 1161-1200 ◽  
Author(s):  
Junqiang Zhang ◽  
Jun Cao ◽  
Renjin Jiang ◽  
Dachun Yang

AbstractLet w be either in the Muckenhoupt class of A2(ℝn) weights or in the class of QC(ℝn) weights, and let be the degenerate elliptic operator on the Euclidean space ℝn, n ≥ 2. In this article, the authors establish the non-tangential maximal function characterization of the Hardy space associated with , and when with , the authors prove that the associated Riesz transform is bounded from to the weighted classical Hardy space .


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jianfeng Dong ◽  
Jizheng Huang ◽  
Heping Liu

LetL=-Δ+Vbe a Schrödinger operator onRn,n≥3, whereV≢0is a nonnegative potential belonging to the reverse Hölder classBn/2. The Hardy type spacesHLp, n/(n+δ) <p≤1,for someδ>0, are defined in terms of the maximal function with respect to the semigroup{e-tL}t>0. In this paper, we investigate the bounded properties of some singular integral operators related toL, such asLiγand∇L-1/2, on spacesHLp. We give the molecular characterization ofHLp, which is used to establish theHLp-boundedness of singular integrals.


2018 ◽  
Vol 5 (1) ◽  
pp. 42-49
Author(s):  
Fernanda Botelho ◽  
T.S.S.R.K. Rao

Abstract This paper concerns the analysis of the structure of bi-contractive projections on spaces of vector valued continuous functions and presents results that extend the characterization of bi-contractive projections given by the first author. It also includes a partial generalization of these results to affine and vector valued continuous functions from a Choquet simplex into a Hilbert space.


Sign in / Sign up

Export Citation Format

Share Document