On the Complex Difference Equation of Hypergeometric Type on Non-uniform Lattices

2020 ◽  
Vol 36 (5) ◽  
pp. 487-511
Author(s):  
Jin Fa Cheng
Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 47 ◽  
Author(s):  
Mama Foupouagnigni ◽  
Salifou Mboutngam

In this paper, we provide a formal proof of the existence of a polynomial solution of fixed degree for a second-order divided-difference equation of the hypergeometric type on non-uniform lattices, generalizing therefore previous work proving existence of the polynomial solution for second-order differential, difference or q-difference equation of hypergeometric type. This is achieved by studying the properties of the mean operator and the divided-difference operator as well as by defining explicitly, the right and the “left” inverse for the second operator. The method constructed to provide this formal proof is likely to play an important role in the characterization of orthogonal polynomials on non-uniform lattices and might also be used to provide hypergeometric representation (when it does exist) of the second solution—non polynomial solution—of a second-order divided-difference equation of hypergeometric type.


2004 ◽  
Vol 15 (09) ◽  
pp. 959-965 ◽  
Author(s):  
KAZUHIRO HIKAMI

We prove that the N-colored Jones polynomial for the torus knot [Formula: see text] satisfies the second order difference equation, which reduces to the first order difference equation for a case of [Formula: see text]. We show that the A-polynomial of the torus knot can be derived from the difference equation. Also constructed is a q-hypergeometric type expression of the colored Jones polynomial for [Formula: see text].


2000 ◽  
Vol 4 (1) ◽  
pp. 21-28
Author(s):  
Alicia Serfaty de Markus

For computational purposes, a numerical algorithm maps a differential equation into an often complex difference equation whose structure and stability depends on the scheme used. When considering nonlinear models, standard and nonstandard integration routines can act invasively and numerical chaotic instabilities may arise. However, because nonstandard schemes offer a direct and generally simpler finite-difference representations, in this work nonstandard constructions were tested over three different systems: a photoconductor model, the Lorenz equations and the Van der Pol equations. Results showed that although some nonstandard constructions created a chaotic dynamics of their own, there was found a construction in every case that greatly reduced or successfully removed numerical chaotic instabilities. These improvements represent a valuable development to incorporate into more sophisticated algorithms.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Guowei Zhang

We estimate the growth of the meromorphic solutions of some complex -difference equations and investigate the convergence exponents of fixed points and zeros of the transcendental solutions of the second order -difference equation. We also obtain a theorem about the -difference equation mixing with difference.


Author(s):  
Sakina Alwhishi ◽  
Rezan Sevinik Adıgüzel ◽  
Mehmet Turan

Discrete q-Hermite I polynomials are a member of the q-polynomials of the Hahn class. They are the polynomial solutions of a second order difference equation of hypergeometric type. These polynomials are one of the q-analogous of the Hermite polynomials. It is well known that the q-Hermite I polynomials approach the Hermite polynomials as q tends to 1. In this chapter, the orthogonality property of the discrete q-Hermite I polynomials is considered. Moreover, the orthogonality relation for the k-th order q-derivatives of the discrete q-Hermite I polynomials is obtained. Finally, it is shown that, under a suitable transformation, these relations give the corresponding relations for the Hermite polynomials in the limiting case as q goes to 1.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Min-Feng Chen ◽  
Ning Cui

AbstractLet f be an entire function of finite order, let $n\geq 1$ n ≥ 1 , $m\geq 1$ m ≥ 1 , $L(z,f)\not \equiv 0$ L ( z , f ) ≢ 0 be a linear difference polynomial of f with small meromorphic coefficients, and $P_{d}(z,f)\not \equiv 0$ P d ( z , f ) ≢ 0 be a difference polynomial in f of degree $d\leq n-1$ d ≤ n − 1 with small meromorphic coefficients. We consider the growth and zeros of $f^{n}(z)L^{m}(z,f)+P_{d}(z,f)$ f n ( z ) L m ( z , f ) + P d ( z , f ) . And some counterexamples are given to show that Theorem 3.1 proved by I. Laine (J. Math. Anal. Appl. 469:808–826, 2019) is not valid. In addition, we study meromorphic solutions to the difference equation of type $f^{n}(z)+P_{d}(z,f)=p_{1}e^{\alpha _{1}z}+p_{2}e^{\alpha _{2}z}$ f n ( z ) + P d ( z , f ) = p 1 e α 1 z + p 2 e α 2 z , where $n\geq 2$ n ≥ 2 , $P_{d}(z,f)\not \equiv 0$ P d ( z , f ) ≢ 0 is a difference polynomial in f of degree $d\leq n-2$ d ≤ n − 2 with small mromorphic coefficients, $p_{i}$ p i , $\alpha _{i}$ α i ($i=1,2$ i = 1 , 2 ) are nonzero constants such that $\alpha _{1}\neq \alpha _{2}$ α 1 ≠ α 2 . Our results are improvements and complements of Laine 2019, Latreuch 2017, Liu and Mao 2018.


Sign in / Sign up

Export Citation Format

Share Document