A Once-Daily High Dose of Intraperitoneal Ascorbate Improves Vestibulo-ocular Reflex Compensation After Unilateral Labyrinthectomy in the Mouse

Author(s):  
Serajul I. Khan ◽  
Alan M. Brichta ◽  
Americo A. Migliaccio
2003 ◽  
Vol 90 (4) ◽  
pp. 2240-2252 ◽  
Author(s):  
Ángel M. Pastor ◽  
David González-Forero

Abducens neurons undergo a dose-dependent synaptic blockade (either disinhibition or complete blockade) when tetanus neurotoxin (TeNT) is injected into the lateral rectus muscle at either a low (0.5) or a high dose (5 ng/kg). We studied the firing pattern and recruitment order in abducens neurons both in control and after TeNT injection. The eye position threshold for recruitment of control abducens neurons was exponentially related to the eye position and velocity sensitivities. We also found a constancy of recruitment threshold for different eye movement modalities (spontaneous, optokinetic, and vestibular). Exponential relationships were found, as well, for eye velocity sensitivity during saccades and for position and velocity sensitivities during the vestibulo-ocular reflex. Likewise, inverse relationships were found between recruitment threshold or position sensitivity with the antidromic latency in control abducens neurons. These relationships, however, did not apply following TeNT treatment. Neuronal firing after TeNT appeared either disinhibited (low dose) or depressed (high dose), but the relationships between neuronal sensitivities and recruitment still applied. However, the pattern of recruitment shifted toward the treated side as more inputs were blocked by the low- and high-dose treatments, respectively. Nonetheless, although the recruitment-to-sensitivity relationships persisted under the TeNT synaptic blockade, we conclude that synaptic inputs are determinant for establishing the recruitment threshold and recruitment spacing of abducens motoneurons and internuclear neurons.


2017 ◽  
Vol 117 (4) ◽  
pp. 1553-1568 ◽  
Author(s):  
Patrick P. Hübner ◽  
Serajul I. Khan ◽  
Americo A. Migliaccio

The α9-nicotinic acetylcholine receptor (α9-nAChR) subunit is expressed in the vestibular and auditory periphery, and its loss of function could compromise peripheral input from the predominantly cholinergic efferent vestibular system (EVS). A recent study has shown that α9-nAChRs play an important role in short-term vestibulo-ocular reflex (VOR) adaptation. We hypothesize that α9-nAChRs could also be important for other forms of vestibular plasticity, such as that needed for VOR recovery after vestibular organ injury. We measured the efficacy of VOR compensation in α9 knockout mice. These mice have deletion of most of the gene ( chrna9) encoding the nAChR and thereby lack α9-nAChRs. We measured the VOR gain (eye velocity/head velocity) in 20 α9 knockout mice and 16 cba129 controls. We measured the sinusoidal (0.2–10 Hz, 20–100°/s) and transient (1,500–6,000°/s2) VOR in complete darkness before (baseline) unilateral labyrinthectomy (UL) and then 1, 5, and 28 days after UL. On day 1 after UL, cba129 mice retained ~50% of their initial function for contralesional rotations, whereas α9 knockout mice only retained ~20%. After 28 days, α9 knockout mice had ~50% lower gain for both ipsilesional and contralesional rotations compared with cba129 mice. Cba129 mice regained ~75% of their baseline function for ipsilesional and ~90% for contralesional rotations. In contrast, α9 knockout mice only regained ~30% and ~50% function, respectively, leaving the VOR severely impaired for rotations in both directions. Our results show that loss of α9-nAChRs severely affects VOR compensation, suggesting that complimentary central and peripheral EVS-mediated adaptive mechanisms might be affected by this loss. NEW & NOTEWORTHY Loss of the α9-nicotinic acetylcholine receptor (α9-nAChR) subunit utilized by the efferent vestibular system (EVS) has been shown to significantly affect vestibulo-ocular reflex (VOR) adaptation. In our present study we have shown that loss of α9-nAChRs also affects VOR compensation, suggesting that the mammalian EVS plays an important role in vestibular plasticity, in general, and that VOR compensation is a more distributed process than previously thought, relying on both central and peripheral changes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gi-Sung Nam ◽  
Thanh Tin Nguyen ◽  
Jin-Ju Kang ◽  
Gyu Cheol Han ◽  
Sun-Young Oh

Objectives: To investigate the ameliorating effects of sinusoidal galvanic vestibular stimulation (GVS) on vestibular compensation from unilateral vestibular deafferentation (UVD) using a mouse model of unilateral labyrinthectomy (UL).Methods: Sixteen male C57BL/6 mice were allocated into two groups that comprise UL groups with GVS (GVS group, n = 9) and without GVS intervention (non-GVS group, n = 7). In the experimental groups, we assessed vestibulo-ocular reflex (VOR) recovery before (baseline) and at 3, 7, and 14 days after surgical unilateral labyrinthectomy. In the GVS group, stimulation was applied for 30 min daily from postoperative days (PODs) 0–4 via electrodes inserted subcutaneously next to both bony labyrinths.Results: Locomotion and VOR were significantly impaired in the non-GVS group compared to baseline. The mean VOR gain of the non-GVS group was attenuated to 0.23 at POD 3 and recovered continuously to the value of 0.54 at POD 14, but did not reach the baseline values at any frequency. GVS intervention significantly accelerated recovery of locomotion, as assessed by the amount of circling and total path length in the open field tasks compared to the non-GVS groups on PODs 3 (p < 0.001 in both amount of circling and total path length) and 7 (p < 0.01 in amount of circling and p < 0.001 in total path length, Mann–Whitney U-test). GVS also significantly improved VOR gain compared to the non-GVS groups at PODs 3 (p < 0.001), 7 (p < 0.001), and 14 (p < 0.001, independent t-tests) during sinusoidal rotations. In addition, the recovery of the phase responses and asymmetry of the VOR was significantly better in the GVS group than in the non-GVS group until 2 weeks after UVD (phase, p = 0.001; symmetry, p < 0.001 at POD 14).Conclusion: Recoveries for UVD-induced locomotion and VOR deficits were accelerated by an early intervention with GVS, which implies that GVS has the potential to improve vestibular compensation in patients with acute unilateral vestibular failure.


2013 ◽  
Vol 72 (3) ◽  
pp. 156-162
Author(s):  
Yumiko O. Kato ◽  
Koshi Mikami ◽  
Yasuhiro Miyamoto ◽  
Shoji Watanabe ◽  
Izumi Koizuka

2020 ◽  
Vol 21 ◽  
pp. 100488
Author(s):  
Adam Pantanowitz ◽  
Kimoon Kim ◽  
Chelsey Chewins ◽  
Isabel N.K. Tollman ◽  
David M. Rubin

Sign in / Sign up

Export Citation Format

Share Document