unilateral labyrinthectomy
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 15)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 12 ◽  
Author(s):  
Thanh Tin Nguyen ◽  
Gi-Sung Nam ◽  
Jin-Ju Kang ◽  
Gyu Cheol Han ◽  
Ji-Soo Kim ◽  
...  

This study aimed to investigate the disparity in locomotor and spatial memory deficits caused by left- or right-sided unilateral vestibular deafferentation (UVD) using a mouse model of unilateral labyrinthectomy (UL) and to examine the effects of galvanic vestibular stimulation (GVS) on the deficits over 14 days. Five experimental groups were established: the left-sided and right-sided UL (Lt.-UL and Rt.-UL) groups, left-sided and right-sided UL with bipolar GVS with the cathode on the lesion side (Lt.-GVS and Rt.-GVS) groups, and a control group with sham surgery. We assessed the locomotor and cognitive-behavioral functions using the open field (OF), Y maze, and Morris water maze (MWM) tests before (baseline) and 3, 7, and 14 days after surgical UL in each group. On postoperative day (POD) 3, locomotion and spatial working memory were more impaired in the Lt.-UL group compared with the Rt.-UL group (p < 0.01, Tamhane test). On POD 7, there was a substantial difference between the groups; the locomotion and spatial navigation of the Lt.-UL group recovered significantly more slowly compared with those of the Rt.-UL group. Although the differences in the short-term spatial cognition and motor coordination were resolved by POD 14, the long-term spatial navigation deficits assessed by the MWM were significantly worse in the Lt.-UL group compared with the Rt.-UL group. GVS intervention accelerated the vestibular compensation in both the Lt.-GVS and Rt.-GVS groups in terms of improvement of locomotion and spatial cognition. The current data imply that right- and left-sided UVD impair spatial cognition and locomotion differently and result in different compensatory patterns. Sequential bipolar GVS when the cathode (stimulating) was assigned to the lesion side accelerated recovery for UVD-induced spatial cognition, which may have implications for managing the patients with spatial cognitive impairment, especially that induced by unilateral peripheral vestibular damage on the dominant side.


2021 ◽  
Vol 429 ◽  
pp. 118493
Author(s):  
Thanh Tin Nguyen ◽  
Gi Sung Nam ◽  
Jin Ju Kang ◽  
Kyu Cheol Han ◽  
Ji-Soo Kim ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Gi-Sung Nam ◽  
Thanh Tin Nguyen ◽  
Jin-Ju Kang ◽  
Gyu Cheol Han ◽  
Sun-Young Oh

Objectives: To investigate the ameliorating effects of sinusoidal galvanic vestibular stimulation (GVS) on vestibular compensation from unilateral vestibular deafferentation (UVD) using a mouse model of unilateral labyrinthectomy (UL).Methods: Sixteen male C57BL/6 mice were allocated into two groups that comprise UL groups with GVS (GVS group, n = 9) and without GVS intervention (non-GVS group, n = 7). In the experimental groups, we assessed vestibulo-ocular reflex (VOR) recovery before (baseline) and at 3, 7, and 14 days after surgical unilateral labyrinthectomy. In the GVS group, stimulation was applied for 30 min daily from postoperative days (PODs) 0–4 via electrodes inserted subcutaneously next to both bony labyrinths.Results: Locomotion and VOR were significantly impaired in the non-GVS group compared to baseline. The mean VOR gain of the non-GVS group was attenuated to 0.23 at POD 3 and recovered continuously to the value of 0.54 at POD 14, but did not reach the baseline values at any frequency. GVS intervention significantly accelerated recovery of locomotion, as assessed by the amount of circling and total path length in the open field tasks compared to the non-GVS groups on PODs 3 (p < 0.001 in both amount of circling and total path length) and 7 (p < 0.01 in amount of circling and p < 0.001 in total path length, Mann–Whitney U-test). GVS also significantly improved VOR gain compared to the non-GVS groups at PODs 3 (p < 0.001), 7 (p < 0.001), and 14 (p < 0.001, independent t-tests) during sinusoidal rotations. In addition, the recovery of the phase responses and asymmetry of the VOR was significantly better in the GVS group than in the non-GVS group until 2 weeks after UVD (phase, p = 0.001; symmetry, p < 0.001 at POD 14).Conclusion: Recoveries for UVD-induced locomotion and VOR deficits were accelerated by an early intervention with GVS, which implies that GVS has the potential to improve vestibular compensation in patients with acute unilateral vestibular failure.


2021 ◽  
Vol 12 ◽  
Author(s):  
Thanh Tin Nguyen ◽  
Gi-Sung Nam ◽  
Jin-Ju Kang ◽  
Gyu Cheol Han ◽  
Ji-Soo Kim ◽  
...  

Objectives: To investigate the deficits of spatial memory and navigation from unilateral vestibular deafferentation (UVD) and to determine the efficacy of galvanic vestibular stimulation (GVS) for recovery from these deficits using a mouse model of unilateral labyrinthectomy (UL).Methods: Thirty-six male C57BL/6 mice were allocated into three groups that comprise a control group and two experimental groups, UVD with (GVS group) and without GVS intervention (non-GVS group). In the experimental groups, we assessed the locomotor and cognitive behavioral function before (baseline) and 3, 7, and 14 days after surgical UL, using the open field (OF), Y maze, and Morris water maze (MWM) tests. In the GVS group, the stimulations were applied for 30 min daily from postoperative day (POD) 0–4 via the electrodes inserted subcutaneously close to both bony labyrinths.Results: Locomotion and spatial cognition were significantly impaired in the mice with UVD non-GVS group compared to the control group. GVS significantly accelerated recovery of locomotion compared to the control and non-GVS groups on PODs 3 (p < 0.001) and 7 (p < 0.05, Kruskal–Wallis and Mann–Whitney U tests) in the OF and Y maze tests. The mice in the GVS group were better in spatial working memory assessed with spontaneous alternation performance and spatial reference memory assessed with place recognition during the Y maze test than those in the non-GVS group on POD 3 (p < 0.001). In addition, the recovery of long-term spatial navigation deficits during the MWM, as indicated by the escape latency and the probe trial, was significantly better in the GVS group than in the non-GVS group 2 weeks after UVD (p < 0.01).Conclusions: UVD impairs spatial memory, navigation, and motor coordination. GVS accelerated recoveries in short- and long-term spatial memory and navigation, as well as locomotor function in mice with UVD, and may be applied to the patients with acute unilateral vestibular failure.


2021 ◽  
Vol 11 (8) ◽  
pp. 987
Author(s):  
Nguyen Nguyen ◽  
Kyu-Sung Kim ◽  
Gyutae Kim

Background: The directional preference of otolith-related vestibular neurons elucidates the neuroanatomical link of labyrinths, but few direct experimental data have been provided. Methods: The directional preference of otolith-related vestibular neurons was measured in the vestibular nucleus using chemically induced unilateral labyrinthectomy (UL). For the model evaluation, static and dynamic behavioral tests as well as a histological test were performed. Extracellular neural activity was recorded for the neuronal responses to the horizontal head rotation and the linear head translation. Results: Seventy-seven neuronal activities were recorded, and the total population was divided into three groups: left UL (20), sham (35), and right UL (22). Based on directional preference, two sub-groups were again classified as contra- and ipsi-preferred neurons. There was no significance in the number of those sub-groups (contra-, 15/35, 43%; ipsi-, 20/35, 57%) in the sham (p = 0.155). However, more ipsi-preferred neurons (19/22, 86%) were observed after right UL (p = 6.056 × 10−5), while left UL caused more contra-preferred neurons (13/20, 65%) (p = 0.058). In particular, the convergent neurons mainly led this biased difference (ipsi-, 100% after right UL and contra-, 89% after left UL) (p < 0.002). Conclusions: The directional preference of the neurons depended on the side of the lesion, and its dominance was mainly led by the convergent neurons.


2021 ◽  
Vol 11 (3) ◽  
pp. 360
Author(s):  
Junya Fukuda ◽  
Kazunori Matsuda ◽  
Go Sato ◽  
Tadashi Kitahara ◽  
Momoyo Matsuoka ◽  
...  

Background: Vestibular compensation (VC) after unilateral labyrinthectomy (UL) consists of the initial and late processes. These processes can be evaluated based on the decline in the frequency of spontaneous nystagmus (SN) and the number of MK801-induced Fos-positive neurons in the contralateral medial vestibular nucleus (contra-MVe) in rats. Histamine H3 receptors (H3R) are reported to be involved in the development of VC. Objective: We examined the effects of betahistine, an H3R antagonist, on the initial and late processes of VC in UL rats. Methods: Betahistine dihydrochloride was continuously administered to the UL rats at doses of 100 and 200 mg/kg/day using an osmotic minipump. MK801 (1.0 mg/kg) was intraperitoneally administered on days 7, 10, 12, and 14 after UL, while Fos-positive neurons were immunohistochemically stained in the contra-MVe. Results: The SN disappeared after 42 h, and continuous infusion of betahistine did not change the decline in the frequency of SN. The number of MK801-induced Fos-positive neurons in contra-MVe significantly decreased on days 7, 10, and 12 after UL in a dose-dependent manner in the betahistine-treated rats, more so than in the saline-treated rats. Conclusion: These findings suggest that betahistine facilitated the late, but not the initial, process of VC in UL rats.


Author(s):  
Larisa Manukyan ◽  
Lilia Hambardzumyan ◽  
Lilit Darbinyan ◽  
Naira Sarkisian ◽  
Vaghinak Sarkisian

Мы протестировали реакции нейронов ядра Дейтерса на двустороннюю высокочастотную стимуляцию паравентрикулярных и супраоптических ядер гипоталамуса (PVN & SON) в норме и после односторонней лабиринтэктомии (UL). Анализ спайковой активности проводился с помощью on-line выборки и специальной программы. Комплексные усредненные гистограммы времени и частоты перисобытий показывают усиление тормозных и возбуждающих реакций нейронов Дейтерса на ранней стадии вестибулярной компенсации после инъекции богатого пролином пептида (PRP-1) и яда кобры Naja Naja Oxiana (NOX), достигая норме по окончании испытаний. При гистохимическом исследовании обнаружено изменение активности Са2+-зависимой кислой фосфатазы (КФ) в нейронах. Было показано, что у UL животных полное исчезновение или задержка обесцвечивания нейронов Дейтерса приводит к нейродегенеративному паттерну в виде клеточного «оттенка». Активность КФ после UL и инъекции PRP-1 вызывает более эффективное восстановление нейронов по сравнению с событиями, наблюдаемыми после введения NOX. Наблюдения за поведением в «открытом поле» показывают, что PRP-1 и NOX являются протекторами, которые могут успешно восстанавливать нарушенные вестибулярные функции. / We tested the reactions of Deiters’ nucleus neurons to bilateral high frequency stimulation of hypothalamic paraventricualar and supraoptic nuclei (PVN & SON) in norm and following unilateral labyrinthectomy (UL). The analysis of spike activity was carried out by mean of on-line selection and special program. The complex averaged perievent time and frequency histograms shows the increase of inhibitory and excitatory reactions of Deiters’ neurons at early stage of vestibular compensation following proline-rich peptide (PRP-1) and cobra venom Naja Naja Oxiana (NOX) injection, reaching the norm at the end of tests. In histochemical study the changes in Ca2+-dependent acidic phosphatase (AP) activity in neurons was discovered. It was shown that in UL animals the total disappearance or delay of decolorizing of Deiters’ neurons lead to neurodegenerative pattern as cellular “shade”. AP activity after UL and PRP-1 injection exerts more effective recovery of neurons in comparison with events, observed after the administration of NOX. The behavioral observations in “open fieald” indicate that PRP-1 and NOX are protectors, which may successfully recover the disturbed vestibular functions.


2020 ◽  
Vol 267 (S1) ◽  
pp. 51-61 ◽  
Author(s):  
François Simon ◽  
David Pericat ◽  
Cassandre Djian ◽  
Desdemona Fricker ◽  
Françoise Denoyelle ◽  
...  

Abstract Objective Unilateral labyrinthectomy (UL) and unilateral vestibular neurectomy (UVN) are two surgical methods to produce vestibular lesions in the mouse. The objective of this study was to describe the surgical technique of both methods, and compare functional compensation using vestibulo-ocular reflex-based tests. Methods UL and UVN were each performed on groups of seven and ten mice, respectively. Main surgical landmarks were the facial nerve, the external auditory canal and the sternomastoid and digastric muscles. For UL, the sternomastoid muscle was elevated to expose the mastoid, which was drilled to destroy the labyrinth. For UVN, the bulla was drilled opened and a transcochlear approach enabled the identification of the vestibulo-cochlear nerve exiting the brainstem, which was sectioned and the ganglion of Scarpa suctioned. Behaviour and vestibular function were analysed before surgery and at 1, 4, 7 days and at 1 month postlesion using sinusoidal rotation, off-vertical axis rotation, static head tilts and angular velocity steps. Results UL is a faster and safer procedure than UVN (operative time 16.3 vs 20.5 min, p = 0.19; survival rate 86% vs 60%, p = 0.25). UVN was more severe with significantly worse behavioural scores at day 4 and day 7 (p < 0.001). Vestibular compensation was overall similar during the first week and at 1 month (non-statistically significant difference). Conclusion Both UL and UVN procedures can routinely be performed in the mouse with similar post-operative recovery and behavioural compensation. The operative risk of vascular or neurological damage is smaller in UL compared to UVN. UVN may be required for specific research protocols studying central cellular process specifically related to the destruction of the ganglion of Scarpa and following vestibular nerve degeneration.


Sign in / Sign up

Export Citation Format

Share Document