recruitment order
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 3)

H-INDEX

27
(FIVE YEARS 0)

Author(s):  
Jaime Ibáñez ◽  
Claudia A. Angeli ◽  
Susan J. Harkema ◽  
Dario Farina ◽  
Enrico Rejc

Spinal cord epidural stimulation (scES) combined with activity-based training can promote motor function recovery in individuals with motor complete spinal cord injury (SCI). The characteristics of motor neuron recruitment, which influence different aspects of motor control, are still unknown when motor function is promoted by scES. Here, we enrolled five individuals with chronic motor complete SCI implanted with a scES unit to study the recruitment order of motor neurons during standing enabled by scES. We recorded high-density electromyography (HD-EMG) signals on the vastus lateralis muscle, and inferred the order of recruitment of motor neurons from the relation between amplitude and conduction velocity of the scES-evoked EMG responses along the muscle fibers. Conduction velocity of scES-evoked responses was modulated over time, while stimulation parameters and standing condition remained constant, with average values ranging between 3.0±0.1 and 4.4±0.3 m/s. We found that the human spinal circuitry receiving epidural stimulation can promote both orderly (according to motor neuron size) and inverse trends of motor neuron recruitment, and that the engagement of spinal networks promoting rhythmic activity may favor orderly recruitment trends. Conversely, the different recruitment trends did not appear to be related with time since injury or scES implant, nor to the ability to achieve independent knees extension, nor to the conduction velocity values. The proposed approach can be implemented to investigate the effects of stimulation parameters and training-induced neural plasticity on the characteristics of motor neuron recruitment order, contributing to improve mechanistic understanding and effectiveness of epidural stimulation-promoted motor recovery after SCI.


Science ◽  
2020 ◽  
Vol 370 (6515) ◽  
pp. 431-436
Author(s):  
Sandeep Kishore ◽  
Eli B. Cadoff ◽  
Moneeza A. Agha ◽  
David L. McLean

In vertebrates, faster movements involve the orderly recruitment of different types of spinal motor neurons. However, it is not known how premotor inhibitory circuits are organized to ensure alternating motor output at different movement speeds. We found that different types of commissural inhibitory interneurons in zebrafish form compartmental microcircuits during development that align inhibitory strength and recruitment order. Axonal microcircuits develop first and provide the most potent premotor inhibition during the fastest movements, followed by perisomatic microcircuits, and then dendritic microcircuits that provide the weakest inhibition during the slowest movements. The conversion of a temporal sequence of neuronal development into a spatial pattern of inhibitory connections provides an “ontogenotopic” solution to the problem of shaping spinal motor output at different speeds of movement.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7175
Author(s):  
Guillermo Mendez-Rebolledo ◽  
Eduardo Guzman-Muñoz ◽  
Rodrigo Ramírez-Campillo ◽  
Pablo Valdés-Badilla ◽  
Carlos Cruz-Montecinos ◽  
...  

Background Several authors have indicated that excess body weight can modify the electromyographic (EMG) amplitude due to the accumulation of subcutaneous fat. This accumulation of adipose tissue around the muscle would affect the metabolic capacity during functional activities. On the other hand, some authors have not observed differences in the myoelectric manifestations of fatigue between normal weight and obese people. Furthermore, these manifestations have not been investigated regarding EMG onset latency, which indicates a pattern of muscle activation between different muscles. The objective of this study was to determine whether an increase in body weight, skinfolds, and muscle fatigue modify the trapezius and serratus anterior (SA) onset latencies and to determine the scapular muscle recruitment order in fatigue and excess body weight conditions. Methods This cross-sectional study was carried out in a university laboratory. The participants were randomly assigned to the no-fatigue group (17 participants) or the fatigue (17 participants) group. The body mass index, skinfold thickness (axillary, pectoral, and subscapular), and percentage of body fat were measured. In addition, the onset latency of the scapular muscles [lower trapezius (LT), middle trapezius (MT), upper trapezius (UT), and SA] was assessed by surface EMG during the performance of a voluntary arm raise task. A multiple linear regression model was adjusted and analyzed for the additive combination of the variables, percentage body fat, skinfold thickness, and fatigue. The differences in onset latency between the scapular muscles were analyzed using a three-way repeated measure analysis of variance. In all the tests, an alpha level <0.05 was considered statistically significant. Results For the MT, LT, and SA onset latencies, the body mass index was associated with a delayed onset latency when it was adjusted for the additive combination of percentage of body fat, skinfold thickness, and fatigue. Of these adjustment factors, the subscapular skinfold thickness (R2 = 0.51; β = 10.7; p = 0.001) and fatigue (R2 = 0.86; β = 95.4; p = 0.001) primarily contributed to the increase in SA onset latency. A significant muscle ×body mass index ×fatigue interaction (F = 4.182; p = 0.008) was observed. In the fatigue/excess body weight condition, the UT was activated significantly earlier than the other three scapular muscles (p < 0.001) and SA activation was significantly delayed compared to LT (p < 0.001). Discussion Excess body weight, adjusted for skinfold thickness (axillary and subscapular) and fatigue, increases the onset latency of the MT, LT, and SA muscles and modifies the recruitment order of scapular muscles. In fact, the scapular stabilizing muscles (MT, LT, and SA) increase their onset latency in comparison to the UT muscle. These results were not observed when excess body weight was considered as an individual variable or when adjusted by the percentage body fat.


2018 ◽  
Vol 27 (4) ◽  
pp. 319-326 ◽  
Author(s):  
Guillermo Mendez-Rebolledo ◽  
Rodrigo Ramirez-Campillo ◽  
Eduardo Guzman-Muñoz ◽  
Valeska Gatica-Rojas ◽  
Alexis Dabanch-Santis ◽  
...  

Context: Kinesio taping is commonly used in sports and rehabilitation settings with the aim of prevention and treatment of musculoskeletal injuries. However, limited evidence exists regarding the effects of 24 and 72 hours of kinesio taping on trunk and lower limb neuromuscular and kinetic performance during a vertical jump. Objective: The purpose of this study was to analyze the short-term effects of kinesio taping on height and ground reaction force during a vertical jump, in addition to trunk and lower limb muscle latency and recruitment order. Design: Single-group pretest–posttest. Setting: University laboratory. Participants: Twelve male athletes from different sports (track and field, basketball, and soccer). Interventions: They completed a single squat and countermovement jump at basal time (no kinesio taping), 24, and 72 hours of kinesio taping application on the gluteus maximus, biceps femoris, rectus femoris, gastrocnemius medialis, and longissimus. Main Outcome Measures: Muscle onset latencies were assessed by electromyography during a squat and countermovement jump, in addition to measurements of the jump height and normalized ground reaction force. Results: The kinesio taping had no effect after 24 hours on either the countermovement or squat jump. However, at 72 hours, the kinesio taping increased the jump height (P = .02; d = 0.36) and normalized ground reaction force (P = .001; d = 0.45) during the countermovement jump. In addition, 72-hour kinesio taping reduced longissimus onset latency (P = .03; d = 1.34) and improved muscle recruitment order during a countermovement jump. Conclusions: These findings suggest that kinesio taping may improve neuromuscular and kinetic performance during a countermovement jump only after 72 hours of application on healthy and uninjured male athletes. However, no changes were observed on a squat jump. Future studies should incorporate a control group to verify kinesio taping’s effects and its influence on injured athletes.


2018 ◽  
Vol 32 ◽  
pp. 80-86 ◽  
Author(s):  
Guillermo Mendez-Rebolledo ◽  
Valeska Gatica-Rojas ◽  
Eduardo Guzman-Muñoz ◽  
Eduardo Martinez-Valdes ◽  
Rodrigo Guzman-Venegas ◽  
...  
Keyword(s):  

Author(s):  
Matthew Pitt

This chapter focuses on the signals recorded with needle electromyography (EMG) and the measurement of their specific parameters. These parameters include duration, amplitude, number of phases, and stability. The concept of the electrophysiologic biopsy and the explanation of unusual findings seen on EMG are introduced. In relation to the interference pattern, discussions of the firing rate, recruitment order, and interference pattern are given. Moving from the theoretical explanation of the findings, the problems of the accurate quantitative analysis of the motor unit potential are discussed and measures to improve quantification, particularly in children, are highlighted. The importance of filter settings, the storage of signals, and the different ways of collecting and analysing the potentials are all covered. This section finishes with discussion of the normative range for motor unit duration, and concludes with the automatic analysis of the interference pattern, including turns/amplitude analysis, number of short segments measurement, and envelope analysis.


2016 ◽  
Vol 31 ◽  
pp. 40-47 ◽  
Author(s):  
Guillermo Mendez-Rebolledo ◽  
Valeska Gatica-Rojas ◽  
Eduardo Martinez-Valdes ◽  
H.B. Xie

2015 ◽  
Author(s):  
Dirson Jian Li

The post-genomic era has brought opportunities to bridge traditionally separate fields on early history of life. New methods promote a deeper understanding of the origin of biodiversity. Relative stabilities of base triplexes are able to regulate base substitutions in triplex DNAs. We constructed a roadmap based on such a regulation to explain concurrent origins of the genetic code and the homochirality of life. Based on the recruitment order of codons in the roadmap and the complete genome sequences, we reconstructed the three-domain tree of life. The Phanerozoic biodiversity curve has been reconstructed based on genomic, climatic and eustatic data; this result supports tectonic cause of mass extinctions. Our results indicate that chirality played a crucial role in the origin and evolution of life. Here is Part I of my two-part series paper; technical details are in Part II of my paper (see “Concurrent origins of the genetic code and the homochirality of life, and the origin and evolution of biodiversity. Part II: Technical appendix” on bioRxiv).


Sign in / Sign up

Export Citation Format

Share Document