computational model
Recently Published Documents





2022 ◽  
Vol 20 (4) ◽  
pp. 582-589
Paulo Cesar Buttenbender ◽  
Eduardo Goncalvez de Azevedo Neto ◽  
Wesllei Felipe Heckler ◽  
Jorge Luis Victoria Barbosa

2022 ◽  
Vol 20 (3) ◽  
pp. 451-457
Nicolas Manrique Nieto ◽  
Carlos Francisco Rodriguez ◽  
Mayerlin Nunez Portela

Anup Bhange ◽  
Sakshi V. Kadu ◽  
Heral V. Mohitkar ◽  
Kartik K. Hinge ◽  
Nikhil C. Ghodke ◽  

Cloud Computing is one of the upcoming Internet based technology. It is been considered as the next generation computing model for its advantages. It is the latest computational model after distributed computing, parallel processing and grid computing. To be effective they need to tap all available sources of supply, both internal and external. The system has facilities where prospective candidates can upload their CV’s and other academic achievements. Earlier recruitment was done manually and it was all at a time-consuming work. Now it is all possible in a fraction of second. Better recruitment and selection strategies result in improved organizational outcomes. With reference to this context, the research paper entitled Recruitment and Selection has been prepared to put a light on Recruitment and Selection process.

2022 ◽  
Vol 13 (1) ◽  
Quan-Hui Liu ◽  
Juanjuan Zhang ◽  
Cheng Peng ◽  
Maria Litvinova ◽  
Shudong Huang ◽  

AbstractThere are contrasting results concerning the effect of reactive school closure on SARS-CoV-2 transmission. To shed light on this controversy, we developed a data-driven computational model of SARS-CoV-2 transmission. We found that by reactively closing classes based on syndromic surveillance, SARS-CoV-2 infections are reduced by no more than 17.3% (95%CI: 8.0–26.8%), due to the low probability of timely identification of infections in the young population. We thus investigated an alternative triggering mechanism based on repeated screening of students using antigen tests. Depending on the contribution of schools to transmission, this strategy can greatly reduce COVID-19 burden even when school contribution to transmission and immunity in the population is low. Moving forward, the adoption of antigen-based screenings in schools could be instrumental to limit COVID-19 burden while vaccines continue to be rolled out.

2022 ◽  
Vol 12 ◽  
Chu-Qiao Gao ◽  
Yuan-Ke Zhou ◽  
Xiao-Hong Xin ◽  
Hui Min ◽  
Pu-Feng Du

Drug repositioning provides a promising and efficient strategy to discover potential associations between drugs and diseases. Many systematic computational drug-repositioning methods have been introduced, which are based on various similarities of drugs and diseases. In this work, we proposed a new computational model, DDA-SKF (drug–disease associations prediction using similarity kernels fusion), which can predict novel drug indications by utilizing similarity kernel fusion (SKF) and Laplacian regularized least squares (LapRLS) algorithms. DDA-SKF integrated multiple similarities of drugs and diseases. The prediction performances of DDA-SKF are better, or at least comparable, to all state-of-the-art methods. The DDA-SKF can work without sufficient similarity information between drug indications. This allows us to predict new purpose for orphan drugs. The source code and benchmarking datasets are deposited in a GitHub repository (

Benjamin W. Scandling ◽  
Jia Gou ◽  
Jessica Thomas ◽  
Jacqueline Xuan ◽  
Chuan Xue ◽  

Many cells in the body experience cyclic mechanical loading, which can impact cellular processes and morphology. In vitro studies often report that cells reorient in response to cyclic stretch of their substrate. To explore cellular mechanisms involved in this reorientation, a computational model was developed by utilizing the previous computational models of the actin-myosin-integrin motor-clutch system developed by others. The computational model predicts that under most conditions, actin bundles align perpendicular to the direction of applied cyclic stretch, but under specific conditions, such as low substrate stiffness, actin bundles align parallel to the direction of stretch. The model also predicts that stretch frequency impacts the rate of reorientation, and that proper myosin function is critical in the reorientation response. These computational predictions are consistent with reports from the literature and new experimental results presented here. The model suggests that the impact of different stretching conditions (stretch type, amplitude, frequency, substrate stiffness, etc.) on the direction of cell alignment can largely be understood by considering their impact on cell-substrate detachment events, specifically whether detachment occurs during stretching or relaxing of the substrate.

Sign in / Sign up

Export Citation Format

Share Document