Journal of the Association for Research in Otolaryngology
Latest Publications


TOTAL DOCUMENTS

1008
(FIVE YEARS 120)

H-INDEX

68
(FIVE YEARS 7)

Published By Springer-Verlag

1438-7573, 1525-3961

Author(s):  
Carolyn M. McClaskey ◽  
James W. Dias ◽  
Richard A. Schmiedt ◽  
Judy R. Dubno ◽  
Kelly C. Harris

Author(s):  
Henri Pöntynen ◽  
Nelli Salminen

AbstractSpatial hearing facilitates the perceptual organization of complex soundscapes into accurate mental representations of sound sources in the environment. Yet, the role of binaural cues in auditory scene analysis (ASA) has received relatively little attention in recent neuroscientific studies employing novel, spectro-temporally complex stimuli. This may be because a stimulation paradigm that provides binaurally derived grouping cues of sufficient spectro-temporal complexity has not yet been established for neuroscientific ASA experiments. Random-chord stereograms (RCS) are a class of auditory stimuli that exploit spectro-temporal variations in the interaural envelope correlation of noise-like sounds with interaurally coherent fine structure; they evoke salient auditory percepts that emerge only under binaural listening. Here, our aim was to assess the usability of the RCS paradigm for indexing binaural processing in the human brain. To this end, we recorded EEG responses to RCS stimuli from 12 normal-hearing subjects. The stimuli consisted of an initial 3-s noise segment with interaurally uncorrelated envelopes, followed by another 3-s segment, where envelope correlation was modulated periodically according to the RCS paradigm. Modulations were applied either across the entire stimulus bandwidth (wideband stimuli) or in temporally shifting frequency bands (ripple stimulus). Event-related potentials and inter-trial phase coherence analyses of the EEG responses showed that the introduction of the 3- or 5-Hz wideband modulations produced a prominent change-onset complex and ongoing synchronized responses to the RCS modulations. In contrast, the ripple stimulus elicited a change-onset response but no response to ongoing RCS modulation. Frequency-domain analyses revealed increased spectral power at the fundamental frequency and the first harmonic of wideband RCS modulations. RCS stimulation yields robust EEG measures of binaurally driven auditory reorganization and has potential to provide a flexible stimulation paradigm suitable for isolating binaural effects in ASA experiments.


Author(s):  
Maike Klingel ◽  
Bernhard Laback

AbstractNormal-hearing (NH) listeners rely on two binaural cues, the interaural time (ITD) and level difference (ILD), for azimuthal sound localization. Cochlear-implant (CI) listeners, however, rely almost entirely on ILDs. One reason is that present-day clinical CI stimulation strategies do not convey salient ITD cues. But even when presenting ITDs under optimal conditions using a research interface, ITD sensitivity is lower in CI compared to NH listeners. Since it has recently been shown that NH listeners change their ITD/ILD weighting when only one of the cues is consistent with visual information, such reweighting might add to CI listeners’ low perceptual contribution of ITDs, given their daily exposure to reliable ILDs but unreliable ITDs. Six bilateral CI listeners completed a multi-day lateralization training visually reinforcing ITDs, flanked by a pre- and post-measurement of ITD/ILD weights without visual reinforcement. Using direct electric stimulation, we presented 100- and 300-pps pulse trains at a single interaurally place-matched electrode pair, conveying ITDs and ILDs in various spatially consistent and inconsistent combinations. The listeners’ task was to lateralize the stimuli in a virtual environment. Additionally, ITD and ILD thresholds were measured before and after training. For 100-pps stimuli, the lateralization training increased the contribution of ITDs slightly, but significantly. Thresholds were neither affected by the training nor correlated with weights. For 300-pps stimuli, ITD weights were lower and ITD thresholds larger, but there was no effect of training. On average across test sessions, adding azimuth-dependent ITDs to stimuli containing ILDs increased the extent of lateralization for both 100- and 300-pps stimuli. The results suggest that low-rate ITD cues, robustly encoded with future CI systems, may be better exploitable for sound localization after increasing their perceptual weight via training.


Author(s):  
L. Koch ◽  
B. H. Gaese ◽  
Manuela Nowotny

AbstractExperiments in rodent animal models help to reveal the characteristics and underlying mechanisms of pathologies related to hearing loss such as tinnitus or hyperacusis. However, a reliable understanding is still lacking. Here, four different rat strains (Sprague Dawley, Wistar, Long Evans, and Lister Hooded) underwent comparative analysis of electrophysiological (auditory brainstem responses, ABRs) and behavioral measures after noise trauma induction to differentiate between strain-dependent trauma effects and more consistent changes across strains, such as frequency dependence or systematic temporal changes. Several hearing- and trauma-related characteristics were clearly strain-dependent. Lister Hooded rats had especially high hearing thresholds and were unable to detect a silent gap in continuous background noise but displayed the highest startle amplitudes. After noise exposure, ABR thresholds revealed a strain-dependent pattern of recovery. ABR waveforms varied in detail among rat strains, and the difference was most prominent at later peaks arising approximately 3.7 ms after stimulus onset. However, changes in ABR waveforms after trauma were small compared to consistent strain-dependent differences between individual waveform components. At the behavioral level, startle-based gap-prepulse inhibition (gap-PPI) was used to evaluate the occurrence and characteristics of tinnitus after noise exposure. A loss of gap-PPI was found in 33% of Wistar, 50% of Sprague Dawley, and 75% of Long Evans rats. Across strains, the most consistent characteristic was a frequency-specific pattern of the loss of gap-PPI, with the highest rates at approximately one octave above trauma. An additional range exhibiting loss of gap-PPI directly below trauma frequency was revealed in Sprague Dawley and Long Evans rats. Further research should focus on these frequency ranges when investigating the underlying mechanisms of tinnitus induction.


Sign in / Sign up

Export Citation Format

Share Document