scholarly journals Period Doubling in the Rössler System—A Computer Assisted Proof

2009 ◽  
Vol 9 (5) ◽  
pp. 611-649 ◽  
Author(s):  
Daniel Wilczak ◽  
Piotr Zgliczyński
2010 ◽  
Vol 31 (4) ◽  
pp. 1193-1228 ◽  
Author(s):  
DENIS GAIDASHEV ◽  
HANS KOCH

AbstractIt has been observed that the famous Feigenbaum–Coullet–Tresser period-doubling universality has a counterpart for area-preserving maps of ℝ2. A renormalization approach has been used in a computer-assisted proof of existence of an area-preserving map with orbits of all binary periods in Eckmannet al[Existence of a fixed point of the doubling transformation for area-preserving maps of the plane.Phys. Rev. A 26(1) (1982), 720–722; A computer-assisted proof of universality for area-preserving maps.Mem. Amer. Math. Soc. 47(1984), 1–121]. As is the case with all non-trivial universality problems in non-dissipative systems in dimensions more than one, no analytic proof of this period-doubling universality exists to date. We argue that the period-doubling renormalization fixed point for area-preserving maps is almost one dimensional, in the sense that it is close to the following Hénon-like (after a coordinate change) map:where ϕ solvesWe then give a ‘proof’ of existence of solutions of small analytic perturbations of this one-dimensional problem, and describe some of the properties of this solution. The ‘proof’ consists of an analytic argument for factorized inverse branches of ϕ together with verification of several inequalities and inclusions of subsets of ℂ numerically. Finally, we suggest an analytic approach to the full period-doubling problem for area-preserving maps based on its proximity to the one-dimensional case. In this respect, the paper is an exploration of possible analytic machinery for a non-trivial renormalization problem in a conservative two-dimensional system.


2008 ◽  
Vol 05 (03) ◽  
pp. 403-412 ◽  
Author(s):  
M. MOSSA AL-SAWALHA ◽  
M. S. M. NOORANI ◽  
I. HASHIM

The aim of this paper is to investigate the accuracy of the Adomian decomposition method (ADM) for solving the hyperchaotic Chen system, which is a four-dimensional system of ODEs with quadratic nonlinearities. Comparisons between the decomposition solutions and the fourth order Runge–Kutta (RK4) solutions are made. We look particularly at the accuracy of the ADM as the hyperchaotic Chen system has higher Lyapunov exponents than the hyperchaotic Rössler system. A comparison with the hyperchaotic Rössler system is given.


2004 ◽  
Vol 14 (05) ◽  
pp. 1683-1704 ◽  
Author(s):  
PEI YU ◽  
GUANRONG CHEN

A general explicit formula is derived for controlling bifurcations using nonlinear state feedback. This method does not increase the dimension of the system, and can be used to either delay (or eliminate) existing bifurcations or change the stability of bifurcation solutions. The method is then employed for Hopf bifurcation control. The Lorenz equation and Rössler system are used to illustrate the application of the approach. It is shown that a simple control can be obtained to simultaneously stabilize two symmetrical equilibria of the Lorenz system, and keep the symmetry of Hopf bifurcations from the equilibria. For the Rössler system, a control is also obtained to simultaneously stabilize two nonsymmetric equilibria and meanwhile stabilize possible Hopf bifurcations from the equilibria. Computer simulation results are presented to confirm the analytical predictions.


Sign in / Sign up

Export Citation Format

Share Document