scholarly journals Symmetric power functoriality for holomorphic modular forms, II

Author(s):  
James Newton ◽  
Jack A. Thorne

AbstractLet $f$ f be a cuspidal Hecke eigenform without complex multiplication. We prove the automorphy of the symmetric power lifting $\operatorname{Sym}^{n} f$ Sym n f for every $n \geq 1$ n ≥ 1 .

2019 ◽  
Vol 17 (1) ◽  
pp. 1631-1651
Author(s):  
Ick Sun Eum ◽  
Ho Yun Jung

Abstract After the significant work of Zagier on the traces of singular moduli, Jeon, Kang and Kim showed that the Galois traces of real-valued class invariants given in terms of the singular values of the classical Weber functions can be identified with the Fourier coefficients of weakly holomorphic modular forms of weight 3/2 on the congruence subgroups of higher genus by using the Bruinier-Funke modular traces. Extending their work, we construct real-valued class invariants by using the singular values of the generalized Weber functions of level 5 and prove that their Galois traces are Fourier coefficients of a harmonic weak Maass form of weight 3/2 by using Shimura’s reciprocity law.


2007 ◽  
Vol 03 (02) ◽  
pp. 207-215 ◽  
Author(s):  
EMRE ALKAN

We prove that certain powers of the gap function for the newform associated to an elliptic curve without complex multiplication are "finite" on average. In particular we obtain quantitative results on the number of large values of the gap function.


2016 ◽  
Vol 12 (08) ◽  
pp. 2043-2060
Author(s):  
Dania Zantout

We define a global linear operator that projects holomorphic modular forms defined on the Siegel upper half space of genus [Formula: see text] to all the rational boundaries of lower degrees. This global operator reduces to Siegel's [Formula: see text] operator when considering only the maximal standard cusps of degree [Formula: see text]. One advantage of this generalization is that it allows us to give a general notion of cusp forms in genus [Formula: see text] and to bridge this new notion with the classical one found in the literature.


2020 ◽  
Vol 16 (05) ◽  
pp. 1111-1152
Author(s):  
Cameron Franc ◽  
Geoffrey Mason

This paper studies modular forms of rank four and level one. There are two possibilities for the isomorphism type of the space of modular forms that can arise from an irreducible representation of the modular group of rank four, and we describe when each case occurs for general choices of exponents for the [Formula: see text]-matrix. In the remaining sections we describe how to write down the corresponding differential equations satisfied by minimal weight forms, and how to use these minimal weight forms to describe the entire graded module of holomorphic modular forms. Unfortunately, the differential equations that arise can only be solved recursively in general. We conclude the paper by studying the cases of tensor products of two-dimensional representations, symmetric cubes of two-dimensional representations, and inductions of two-dimensional representations of the subgroup of the modular group of index two. In these cases, the differential equations satisfied by minimal weight forms can be solved exactly.


2019 ◽  
Vol 15 (10) ◽  
pp. 2107-2114
Author(s):  
Liubomir Chiriac

The generalized Ramanujan Conjecture for cuspidal unitary automorphic representations [Formula: see text] on [Formula: see text] posits that [Formula: see text]. We prove that this inequality is strict if [Formula: see text] is generated by a Hilbert modular form of weight two, with complex multiplication, and [Formula: see text] is a finite place of degree one. Equivalently, the Satake parameters of [Formula: see text] are necessarily distinct. We also give examples where the equality case does occur for places [Formula: see text] of degree two.


2020 ◽  
Vol 16 (06) ◽  
pp. 1185-1197
Author(s):  
Chi-Yun Hsu

Let [Formula: see text] be a modular form with complex multiplication. If [Formula: see text] has critical slope, then Coleman’s classicality theorem implies that there is a [Formula: see text]-adic overconvergent generalized Hecke eigenform with the same Hecke eigenvalues as [Formula: see text]. We give a formula for the Fourier coefficients of this generalized Hecke eigenform. We also investigate the dimension of the generalized Hecke eigenspace of [Formula: see text]-adic overconvergent forms containing [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document