scholarly journals Evolutionary diversification of taiwanioid conifers: evidence from a new Upper Cretaceous seed cone from Hokkaido, Japan

2020 ◽  
Vol 133 (5) ◽  
pp. 681-692
Author(s):  
Ruth A. Stockey ◽  
Harufumi Nishida ◽  
Gar W. Rothwell
Botany ◽  
2021 ◽  
pp. 457-473
Author(s):  
Brian A. Atkinson ◽  
Dori L. Contreras ◽  
Ruth A. Stockey ◽  
Gar W. Rothwell

Conifers of the taxodiaceous grade of Cupressaceae were more diverse and widespread during the Mesozoic than they are today. The earliest diverging subfamily, Cunninghamioideae, only includes a single extant genus, but has at least 10 fossil genera. Here, two additional cunninghamioid genera are characterized on the basis of permineralized seed cones from the Upper Cretaceous of Hokkaido, Japan. These conifers display seed cone characters typical of cunninghamioids; however, they have a mosaic of characters that are not seen in any reported conifer of Cupressaceae. They are, therefore, designated as two new extinct species: Ohanastrobus hokkaidoensis gen. et sp. nov. and Nishidastrobus japonicum gen. et sp. nov. These newly reported conifers expand the taxonomic and morphological diversity of cunninghamioids. The stratigraphic and paleobiogeographic records of cunninghamioids and other fossil Cupressaceae with foliate seed cones indicate they peak in diversity during the Cretaceous. The living genera Taiwania and Cunninghamia appear during the Albian and Campanian, respectively, and maintain a nearly continuous fossil record through to today, while nearly all other extinct genera of Cupressaceae with foliate cones disappear by the close of the Campanian. As more ancient cunninghamioids are recovered, our understanding of macroevolutionary patterns of this once diverse lineage will be further elucidated.


Botany ◽  
2016 ◽  
Vol 94 (9) ◽  
pp. 847-861 ◽  
Author(s):  
Gar W. Rothwell ◽  
Tamiko Ohana

An anatomically preserved seed cone from Late Cretaceous (Santonian–Coniacian) sediments of the Yezo Group on the Japanese Island of Hokkaido documents additional diversity among sequoioid conifers, and reveals previously unknown mechanisms for pollination and post-pollination seed enclosure in the conifer family Cupressaceae. The cylindrical seed cone of Stockeystrobus interdigitata gen. et sp. nov., consists of a central axis bearing helically arranged bract–scale complexes. Individual complexes are tightly packed and peltate in form, with completely fused bracts and scales. Peltate heads of adjacent complexes are attached to each other by elongated interdigitating epidermal trichomes. Each complex bears 6–8 inverted seeds on the adaxial surface of the inside of the peltate bract–scale complex head. Seeds occur in a single row, are roughly disk shaped, with broad wings in the major plane of symmetry. The nucellus is attached to the seed integument at the chalaza and free distally, with a convoluted apex. This cone reveals greater diversity of sequoioid reproductive biology than is represented among living species, and demonstrates that completely enclosed cones with well protected seeds were produced by Late Cretaceous fossil conifers of the Cupressaceae.


Island Arc ◽  
2000 ◽  
Vol 9 (4) ◽  
pp. 611-626 ◽  
Author(s):  
Shigeyuki Suzuki ◽  
Shizuo Takemura ◽  
Graciano P. Yumul ◽  
Sevillo D. David ◽  
Daniel K. Asiedu

10.1029/ft172 ◽  
1989 ◽  
Author(s):  
W. Burleigh Harris ◽  
Vernon J. Hurst ◽  
Paul G. Nystrom ◽  
Lauck W. Ward ◽  
Charles W. Hoffman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document