evolutionary diversification
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 131)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jingyi Li ◽  
Shaoqun Liu ◽  
Peifen Chen ◽  
Jiarong Cai ◽  
Song Tang ◽  
...  

The R2R3-MYB transcription factor (TF) family regulates metabolism of phenylpropanoids in various plant lineages. Species-expanded or specific MYB TFs may regulate species-specific metabolite biosynthesis including phenylpropanoid-derived bioactive products. Camellia sinensis produces an abundance of specialized metabolites, which makes it an excellent model for digging into the genetic regulation of plant-specific metabolite biosynthesis. The most abundant health-promoting metabolites in tea are galloylated catechins, and the most bioactive of the galloylated catechins, epigallocatechin gallate (EGCG), is specifically relative abundant in C. sinensis. However, the transcriptional regulation of galloylated catechin biosynthesis remains elusive. This study mined the R2R3-MYB TFs associated with galloylated catechin biosynthesis in C. sinensis. A total of 118 R2R3-MYB proteins, classified into 38 subgroups, were identified. R2R3-MYB subgroups specific to or expanded in C. sinensis were hypothesized to be essential to evolutionary diversification of tea-specialized metabolites. Notably, nine of these R2R3-MYB genes were expressed preferentially in apical buds (ABs) and young leaves, exactly where galloylated catechins accumulate. Three putative R2R3-MYB genes displayed strong correlation with key galloylated catechin biosynthesis genes, suggesting a role in regulating biosynthesis of epicatechin gallate (ECG) and EGCG. Overall, this study paves the way to reveal the transcriptional regulation of galloylated catechins in C. sinensis.


Author(s):  
Michael Dean ◽  
Karobi Moitra ◽  
Rando Allikmets

The ATP-binding cassette (ABC) transporter superfamily comprises membrane proteins that efflux various substrates across extra- and intra-cellular membranes. Mutations in ABC genes cause 21 human disorders or phenotypes with Mendelian inheritance, including cystic fibrosis, adrenoleukodystrophy, retinal degeneration, cholesterol, and bile transport defects. Common polymorphisms and rare variants in ABC genes are associated with several complex phenotypes such as gout, gallstones, and cholesterol levels. Overexpression or amplification of specific drug efflux genes contributes to chemotherapy multidrug resistance. Conservation of the ATP-binding domains of ABC transporters defines the superfamily members, and phylogenetic analysis groups the 48 human ABC transporters into seven distinct subfamilies. While the conservation of ABC genes across most vertebrate species is high, there is also considerable gene duplication, deletion, and evolutionary diversification.


2021 ◽  
Author(s):  
Ajith Ashokan ◽  
Piyakaset Suksathan ◽  
Jana Leong-Škorničková ◽  
Mark Newman ◽  
W. John Kress ◽  
...  

ABSTRACTPREMISEHedychium J.Koenig (ginger lilies: Zingiberaceae) is endemic to the Indo-Malayan Realm (IMR) and is known for its fragrant flowers. Two different pollination syndromes characterize the genus: diurnal or bird pollination and nocturnal or moth pollination systems. To date, no attempt has been undertaken to understand the evolution of floral traits in this genus.METHODSWe estimated ancestral character-states, phylogenetic signals, and character correlations for thirteen discrete and eight continuous floral traits representing 75% species diversity of Hedychium. Diversification rate estimation analyses were also employed to understand trait-dependent diversification in the genus.RESULTSInflorescence structure, cincinnus capacity, and curvature of floral tubes revealed strong phylogenetic dependence, whereas number of open flowers per inflorescence per day, color of the labellum, and exertion of the stigma characterized higher ecological effects. Diversification rate estimations suggested that the labellum width, floral tube length, and labellum color played a major role in the evolutionary diversification of Hedychium.CONCLUSIONSWe identified bract type and cincinnus capacity as synapomorphies for Hedychium, while the island-specific clade III was characterized by slender cylindrical inflorescence, coiling of floral tubes, and longer bract to calyx ratio. The circum-Himalayan clade IV is the most speciose, derived, and with most variable floral traits. Although floral color and size lacked any association with pollinator-specific traits (moth and bird pollination), pale colored flowers were most common in the early diverging clades (clade I, II-el., and II-de.), indicating their ancestral nature, when compared to brightly colored flowers.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Leah M. Williams ◽  
Sainetra Sridhar ◽  
Jason Samaroo ◽  
Jada Peart ◽  
Ebubechi K. Adindu ◽  
...  

AbstractWe provide a functional characterization of transcription factor NF-κB in protists and provide information about the evolution and diversification of this biologically important protein. We characterized NF-κB in two protists using phylogenetic, cellular, and biochemical techniques. NF-κB of the holozoan Capsaspora owczarzaki (Co) has an N-terminal DNA-binding domain and a C-terminal Ankyrin repeat (ANK) domain, and its DNA-binding specificity is more similar to metazoan NF-κB proteins than to Rel proteins. Removal of the ANK domain allows Co-NF-κB to enter the nucleus, bind DNA, and activate transcription. However, C-terminal processing of Co-NF-κB is not induced by IκB kinases in human cells. Overexpressed Co-NF-κB localizes to the cytoplasm in Co cells. Co-NF-κB mRNA and DNA-binding levels differ across three Capsaspora life stages. RNA-sequencing and GO analyses identify possible gene targets of Co-NF-κB. Three NF-κB-like proteins from the choanoflagellate Acanthoeca spectabilis (As) contain conserved Rel Homology domain sequences, but lack C-terminal ANK repeats. All three As-NF-κB proteins constitutively enter the nucleus of cells, but differ in their DNA-binding abilities, transcriptional activation activities, and dimerization properties. These results provide a basis for understanding the evolutionary origins of this key transcription factor and could have implications for the origins of regulated immunity in higher taxa.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258889
Author(s):  
Charlene L. McCord ◽  
Chloe M. Nash ◽  
W. James Cooper ◽  
Mark W. Westneat

The damselfishes (family Pomacentridae) inhabit near-shore communities in tropical and temperature oceans as one of the major lineages in coral reef fish assemblages. Our understanding of their evolutionary ecology, morphology and function has often been advanced by increasingly detailed and accurate molecular phylogenies. Here we present the next stage of multi-locus, molecular phylogenetics for the group based on analysis of 12 nuclear and mitochondrial gene sequences from 345 of the 422 damselfishes. The resulting well-resolved phylogeny helps to address several important questions about higher-level damselfish relationships, their evolutionary history and patterns of divergence. A time-calibrated phylogenetic tree yields a root age for the family of 55.5 mya, refines the age of origin for a number of diverse genera, and shows that ecological changes during the Eocene-Oligocene transition provided opportunities for damselfish diversification. We explored the idea that body size extremes have evolved repeatedly among the Pomacentridae, and demonstrate that large and small body sizes have evolved independently at least 40 times and with asymmetric rates of transition among size classes. We tested the hypothesis that transitions among dietary ecotypes (benthic herbivory, pelagic planktivory and intermediate omnivory) are asymmetric, with higher transition rates from intermediate omnivory to either planktivory or herbivory. Using multistate hidden-state speciation and extinction models, we found that both body size and dietary ecotype are significantly associated with patterns of diversification across the damselfishes, and that the highest rates of net diversification are associated with medium body size and pelagic planktivory. We also conclude that the pattern of evolutionary diversification in feeding ecology, with frequent and asymmetrical transitions between feeding ecotypes, is largely restricted to the subfamily Pomacentrinae in the Indo-West Pacific. Trait diversification patterns for damselfishes across a fully resolved phylogeny challenge many recent general conclusions about the evolution of reef fishes.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1628
Author(s):  
Saara K. Luna ◽  
Frédéric J. J. Chain

Gene duplications generate new genes that can contribute to expression changes and the evolution of new functions. Genomes often consist of gene families that undergo expansions, some of which occur in specific lineages that reflect recent adaptive diversification. In this study, lineage-specific genes and gene family expansions were studied across five dictyostelid species to determine when and how they are expressed during multicellular development. Lineage-specific genes were found to be enriched among genes with biased expression (predominant expression in one developmental stage) in each species and at most developmental time points, suggesting independent functional innovations of new genes throughout the phylogeny. Biased duplicate genes had greater expression divergence than their orthologs and paralogs, consistent with subfunctionalization or neofunctionalization. Lineage-specific expansions in particular had biased genes with both molecular signals of positive selection and high expression, suggesting adaptive genetic and transcriptional diversification following duplication. Our results present insights into the potential contributions of lineage-specific genes and families in generating species-specific phenotypes during multicellular development in dictyostelids.


2021 ◽  
Author(s):  
Simone M Gable ◽  
Michael I Byars ◽  
Robert Literman ◽  
Marc Tollis

To examine phylogenetic heterogeneity in turtle evolution, we collected thousands of high-confidence single-copy orthologs from 19 genome assemblies representative of extant turtle diversity and estimated a phylogeny with multispecies coalescent and concatenated partitioned methods. We also collected next-generation sequences from 26 turtle species and assembled millions of biallelic markers to reconstruct phylogenies from annotated regions (coding regions, introns, untranslated regions, intergenic, and others) of the western painted turtle (Chrysemys picta bellii) genome. We then measured gene tree-species tree discordance, as well as gene and site heterogeneity at each node in the inferred trees, and tested for incomplete lineage sorting and temporal patterns in phylogenomic heterogeneity across turtle evolution. We found 100% support for all bifurcations in the inferred turtle species phylogenies. However, a number of genes, sites, and genomic features supported alternate relationships between turtle taxa, and some nodes in the turtle phylogeny were well-explained by incomplete lineage sorting. There was no clear pattern between site concordance, node age, and DNA substitution rate across most annotated genomic regions, suggesting a relatively uniform proportion of informative sites drive phylogenetic inference across the evolution of turtles. We found more gene concordance at older nodes in the turtle phylogeny, and suggest that, in addition to incomplete lineage sorting, an overall lack of gene informativeness stemming from a slow rate of evolution can confound inferred patterns in turtle phylogenomics, particularly at more recent divergences. Our study demonstrates that heterogeneity is to be expected even in well resolved clades such as turtles, and that future phylogenomic studies should aim to sample as much of the genome as possible.


2021 ◽  
Vol 118 (42) ◽  
pp. e2105252118
Author(s):  
Christoph Hauert ◽  
Michael Doebeli

Cooperative investments in social dilemmas can spontaneously diversify into stably coexisting high and low contributors in well-mixed populations. Here we extend the analysis to emerging diversity in (spatially) structured populations. Using pair approximation, we derive analytical expressions for the invasion fitness of rare mutants in structured populations, which then yields a spatial adaptive dynamics framework. This allows us to predict changes arising from population structures in terms of existence and location of singular strategies, as well as their convergence and evolutionary stability as compared to well-mixed populations. Based on spatial adaptive dynamics and extensive individual-based simulations, we find that spatial structure has significant and varied impacts on evolutionary diversification in continuous social dilemmas. More specifically, spatial adaptive dynamics suggests that spontaneous diversification through evolutionary branching is suppressed, but simulations show that spatial dimensions offer new modes of diversification that are driven by an interplay of finite-size mutations and population structures. Even though spatial adaptive dynamics is unable to capture these new modes, they can still be understood based on an invasion analysis. In particular, population structures alter invasion fitness and can open up new regions in trait space where mutants can invade, but that may not be accessible to small mutational steps. Instead, stochastically appearing larger mutations or sequences of smaller mutations in a particular direction are required to bridge regions of unfavorable traits. The net effect is that spatial structure tends to promote diversification, especially when selection is strong.


2021 ◽  
Vol 118 (42) ◽  
pp. e2024451118 ◽  
Author(s):  
Austin H. Patton ◽  
Luke J. Harmon ◽  
María del Rosario Castañeda ◽  
Hannah K. Frank ◽  
Colin M. Donihue ◽  
...  

Oceanic islands are known as test tubes of evolution. Isolated and colonized by relatively few species, islands are home to many of nature’s most renowned radiations from the finches of the Galápagos to the silverswords of the Hawaiian Islands. Despite the evolutionary exuberance of insular life, island occupation has long been thought to be irreversible. In particular, the presumed much tougher competitive and predatory milieu in continental settings prevents colonization, much less evolutionary diversification, from islands back to mainlands. To test these predictions, we examined the ecological and morphological diversity of neotropical Anolis lizards, which originated in South America, colonized and radiated on various islands in the Caribbean, and then returned and diversified on the mainland. We focus in particular on what happens when mainland and island evolutionary radiations collide. We show that extensive continental radiations can result from island ancestors and that the incumbent and invading mainland clades achieve their ecological and morphological disparity in very different ways. Moreover, we show that when a mainland radiation derived from island ancestors comes into contact with an incumbent mainland radiation the ensuing interactions favor the island-derived clade.


Sign in / Sign up

Export Citation Format

Share Document