Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1

2015 ◽  
Vol 43 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Jinsuk J. Lee ◽  
Nathan Crook ◽  
Jie Sun ◽  
Hal S. Alper
2006 ◽  
Vol 72 (8) ◽  
pp. 5492-5499 ◽  
Author(s):  
Minoska Valli ◽  
Michael Sauer ◽  
Paola Branduardi ◽  
Nicole Borth ◽  
Danilo Porro ◽  
...  

ABSTRACT Yeast strains expressing heterologous l-lactate dehydrogenases can produce lactic acid. Although these microorganisms are tolerant of acidic environments, it is known that at low pH, lactic acid exerts a high level of stress on the cells. In the present study we analyzed intracellular pH (pHi) and viability by staining with cSNARF-4F and ethidium bromide, respectively, of two lactic-acid-producing strains of Saccharomyces cerevisiae, CEN.PK m850 and CEN.PK RWB876. The results showed that the strain producing more lactic acid, CEN.PK m850, has a higher pHi. During batch culture, we observed in both strains a reduction of the mean pHi and the appearance of a subpopulation of cells with low pHi. Simultaneous analysis of pHi and viability proved that the cells with low pHi were dead. Based on the observation that the better lactic-acid-producing strain had a higher pHi and that the cells with low pHi were dead, we hypothesized that we might find better lactic acid producers by screening for cells within the highest pHi range. The screening was performed on UV-mutagenized populations through three consecutive rounds of cell sorting in which only the viable cells within the highest pHi range were selected. The results showed that lactic acid production was significantly improved in the majority of the mutants obtained compared to the parental strains. The best lactic-acid-producing strain was identified within the screening of CEN.PK m850 mutants.


2015 ◽  
Vol 99 (19) ◽  
pp. 8023-8033 ◽  
Author(s):  
Timothy L. Turner ◽  
Guo-Chang Zhang ◽  
Soo Rin Kim ◽  
Vijay Subramaniam ◽  
David Steffen ◽  
...  

2006 ◽  
Vol 101 (2) ◽  
pp. 172-177 ◽  
Author(s):  
Nobuhiro Ishida ◽  
Tomiko Suzuki ◽  
Kenro Tokuhiro ◽  
Eiji Nagamori ◽  
Toru Onishi ◽  
...  

2020 ◽  
Vol 104 (21) ◽  
pp. 9147-9158
Author(s):  
Ryosuke Mitsui ◽  
Ryosuke Yamada ◽  
Takuya Matsumoto ◽  
Shizue Yoshihara ◽  
Hayato Tokumoto ◽  
...  

2014 ◽  
Vol 13 (1) ◽  
pp. 147 ◽  
Author(s):  
Laura Dato ◽  
Nadia Berterame ◽  
Maria Ricci ◽  
Paola Paganoni ◽  
Luigi Palmieri ◽  
...  

2016 ◽  
Vol 35 ◽  
pp. 38-45 ◽  
Author(s):  
Ji-Yoon Song ◽  
Joon-Song Park ◽  
Chang Duk Kang ◽  
Hwa-Young Cho ◽  
Dongsik Yang ◽  
...  

2015 ◽  
Vol 81 (24) ◽  
pp. 8392-8401 ◽  
Author(s):  
Daehee Kim ◽  
Ji-Yoon Song ◽  
Ji-Sook Hahn

ABSTRACTMetabolic engineering to increase the glucose uptake rate might be beneficial to improve microbial production of various fuels and chemicals. In this study, we enhanced the glucose uptake rate inSaccharomyces cerevisiaeby overexpressing hexose transporters (HXTs). Among the 5 tested HXTs (Hxt1, Hxt2, Hxt3, Hxt4, and Hxt7), overexpression of high-affinity transporter Hxt7 was the most effective in increasing the glucose uptake rate, followed by moderate-affinity transporters Hxt2 and Hxt4. Deletion ofSTD1andMTH1, encoding corepressors ofHXTgenes, exerted differential effects on the glucose uptake rate, depending on the culture conditions. In addition, improved cell growth and glucose uptake rates could be achieved by overexpression ofGCR1, which led to increased transcription levels ofHXT1and ribosomal protein genes. All genetic modifications enhancing the glucose uptake rate also increased the ethanol production rate in wild-typeS. cerevisiae. Furthermore, the growth-promoting effect ofGCR1overexpression was successfully applied to lactic acid production in an engineered lactic acid-producing strain, resulting in a significant improvement of productivity and titers of lactic acid production under acidic fermentation conditions.


Sign in / Sign up

Export Citation Format

Share Document