Journal of Industrial Microbiology & Biotechnology
Latest Publications


TOTAL DOCUMENTS

3583
(FIVE YEARS 302)

H-INDEX

99
(FIVE YEARS 10)

Published By Springer-Verlag

1476-5535, 1367-5435

Author(s):  
Eiji Ishikawa ◽  
Masakazu Ikeda ◽  
Hidetsugu Sotoya ◽  
Minako Anbe ◽  
Hoshitaka Matsumoto ◽  
...  

Abstract Cell-bound β-glycosidases of basidiomycetous yeasts show promise as biocatalysts in galactooligosaccharide (GOS) production. Using degenerated primers designed from Hamamotoa singularis (Hs) bglA gene, we newly identified three genes that encode cell-bound β-glycosidase from Sirobasidium magnum (Sm), Rhodotorula minuta (Rm), and Sterigmatomyces elviae (Se). These three genes, also named bglA, encoded family 1 glycosyl hydrolases with molecular masses of 67‒77 kDa. The BglA enzymes were approximately 44% identical to the Hs-BglA enzyme and possessed a unique domain at the N-terminus comprising 110 or 210 amino acids. The Sm-, Rm-, and Se-BglA enzymes as well as the Hs-BglA enzyme were successfully produced by recombinant Aspergillus oryzae, and all enzymes were entirely secreted to the supernatants. Furthermore, addition of some nonionic detergents (e.g. 0.4% [v/v] Triton-X) increased the production, especially of the Hs- or Se-BglA enzyme. Out of the BglA enzymes, the Se-BglA enzyme showed remarkable thermostability (∼70°C). Additionally, the Sm- and Se-BglA enzymes had better GOS yields, so there was less residual lactose than in others. Accordingly, the basidiomycetous BglA enzymes produced by recombinant A. oryzae would be applicable to GOS production, and the Se-BglA enzyme appeared to be the most promising enzyme for industrial uses.


Author(s):  
Estefanía Sierra-Ibarra ◽  
Jorge Alcaraz-Cienfuegos ◽  
Alejandra Vargas-Tah ◽  
Alberto Rosas-Aburto ◽  
Ángeles Valdivia-López ◽  
...  

Abstract Teak wood residues were subjected to thermochemical pretreatment, enzymatic saccharification, and detoxification to obtain syrups with a high concentration of fermentable sugars for ethanol production with the ethanologenic Escherichia coli strain MS04. Teak is a hardwood, and thus a robust deconstructive pretreatment was applied followed by enzymatic saccharification. The resulting syrup contained 60 g L−1 glucose, 18 g L−1 xylose, 6 g L−1 acetate, less than 0.1 g L−1 of total furans, and 12 g L−1 of soluble phenolic compounds (SPC). This concentration of SPC is toxic to E. coli, and thus two detoxification strategies were assayed: 1) treatment with Coriolopsis gallica laccase followed by addition of activated carbon and 2) overliming with Ca(OH)2. These reduced the phenolic compounds by 40 and 76%, respectively. The detoxified syrups were centrifuged and fermented with E. coli MS04. Cultivation with the over-limed hydrolysate showed a 60% higher volumetric productivity (0.45 gETOH L−1 h−1). The bioethanol/sugars yield was over 90% in both strategies.


Author(s):  
Guohui Li ◽  
Li Wang ◽  
Yu Deng ◽  
Qufu Wei

Abstract Bacterial cellulose is a glucose biopolymer produced by microorganisms and widely used as a natural renewable and sustainable resource in the world. However, few bacterial cellulose-producing strains and low yield of cellulose greatly limited the development of bacterial cellulose. In this review, we summarized the 30 cellulose-producing bacteria reported so far, including the physiological functions and the metabolic synthesis mechanism of bacterial cellulose, and the involved three kinds of cellulose synthases (type I, type II, and type III), which are expected to provide a reference for the exploration of new cellulose-producing microbes.


Author(s):  
Yohei Iizaka ◽  
Ryusei Arai ◽  
Akari Takahashi ◽  
Mikino Ito ◽  
Miho Sakai ◽  
...  

Abstract MycG is a multifunctional P450 monooxygenase that catalyzes sequential hydroxylation and epoxidation or a single epoxidation in mycinamicin biosynthesis. In the mycinamicin-producing strain Micromonospora griseorubida A11725, very low-level accumulation of mycinamicin V generated by the initial C-14 allylic hydroxylation of MycG is observed due to its subsequent epoxidation to generate mycinamicin II, the terminal metabolite in this pathway. Herein, we investigated whether MycG can be engineered for production of the mycinamicin II intermediate as the predominant metabolite. Thus, mycG was subject to random mutagenesis and screening was conducted in Escherichia coli whole-cell assays. This enabled efficient identification of amino acid residues involved in reaction profile alterations, which included MycG R111Q/V358L, W44R, and V135G/E355K with enhanced monohydroxylation to accumulate mycinamicin V. The MycG V135G/E355K mutant generated 40-fold higher levels of mycinamicin V compared to wild-type M. griseorubida A11725. In addition, the E355K mutation showed improved ability to catalyze sequential hydroxylation and epoxidation with minimal mono-epoxidation product mycinamicin I compared to the wild-type enzyme. These approaches demonstrate the ability to selectively coordinate the catalytic activity of multifunctional P450s and efficiently produce the desired compounds.


Author(s):  
Gavin Kurgan ◽  
Moses Onyeabor ◽  
Steven C Holland ◽  
Eric Taylor ◽  
Aidan Schneider ◽  
...  

Abstract Cellular import of D-xylose, the second most abundant sugar in typical lignocellulosic biomass, has been evidenced to be an energy-depriving process in bacterial biocatalysts. The sugar facilitator of Zymomonas mobilis, Glf, is capable of importing xylose at high rates without extra energy input, but is inhibited by D-glucose (the primary biomass sugar), potentially limiting the utility of this transporter for fermentation of sugar mixtures derived from lignocellulose. In this work we developed an Escherichia coli platform strain deficient in glucose and xylose transport to facilitate directed evolution of Glf to overcome glucose inhibition. Using this platform, we isolated nine Glf variants created by both random and site-saturation mutagenesis with increased xylose utilization rates ranging from 4.8-fold to 13-fold relative to wild-type Glf when fermenting 100 g l–1 glucose–xylose mixtures. Diverse point mutations such as A165M and L445I were discovered leading to released glucose inhibition. Most of these mutations likely alter sugar coordinating pocket for the 6-hydroxymethyl group of D-glucose. These discovered glucose-resistant Glf variants can be potentially used as energy-conservative alternatives to the native sugar transport systems of bacterial biocatalysts for fermentation of lignocellulose-derived sugars.


Author(s):  
Evelyn C Mollocana-Lara ◽  
Ming Ni ◽  
Spiros N Agathos ◽  
Fernando A Gonzales-Zubiate

Abstract Although the study of ribonucleic acid (RNA) therapeutics started decades ago, for many years, this field of research was overshadowed by the growing interest in DNA-based therapies. Nowadays, the role of several types of RNA in cell regulation processes and the development of various diseases have been elucidated, and research in RNA therapeutics is back with force. This short literature review aims to present general aspects of many of the molecules currently used in RNA therapeutics, including in vitro transcribed mRNA (IVT mRNA), antisense oligonucleotides (ASOs), aptamers, small interfering RNAs (siRNAs), and microRNAs (miRNAs). In addition, we describe the state of the art of technologies applied for synthetic RNA manufacture and delivery. Likewise, we detail the RNA-based therapies approved by the FDA so far, as well as the ongoing clinical investigations. As a final point, we highlight the current and potential advantages of working on RNA-based therapeutics and how these could lead to a new era of accessible and personalized healthcare.


Author(s):  
Hiroya Tomita ◽  
Yohei Katsuyama ◽  
Yasuo Ohnishi

Abstract Nitroaromatic compounds are essential materials for chemical industry, but they are also potentially toxic environmental pollutants. Therefore, their sensitive detection and degradation are important concerns. The microbial degradation pathways of nitroaromatic compounds have been studied in detail, but their usefulness needs to be evaluated to understand their potential applications in bioremediation. Here, we developed a rapid and relatively sensitive assay system to evaluate the activities and substrate specificities of nitroaromatic dioxygenases involved in the oxidative biodegradation of nitroaromatic compounds. In this system, nitrous acid, which was released from the nitroaromatic compounds by the dioxygenases, was detected and quantified using the Saltzman reagent. Escherichia coli producing the 3-nitrobenzoic acid dioxygenase complex MnbAB from Comamonas sp. JS46 clearly showed the apparent substrate specificity of MnbAB as follows. MnbAB accepted not only 3-nitrobenzoic acid but also several other p- and m-nitrobenzoic acid derivatives as substrates, although it much preferred 3-nitrobenzoic acid to others. Furthermore, the presence of a hydroxy or an amino group at the ortho position of the nitro group decreased the activity of MnbAB. In addition, MnbAB accepted 2-(4-nitrophenyl)acetic acid as a substrate, which has one additional methylene group between the aromatic ring and the carboxy group of 3-nitrobenzoic acid. This is the first report about the detailed substrate specificity of MnbAB. Our system can be used for other nitroaromatic dioxygenases and contribute to their characterization.


Author(s):  
Alejandra Mejía-Caballero ◽  
Vianey Anahi Salas-Villagrán ◽  
Alaide Jiménez-Serna ◽  
Amelia Farrés

Abstract Probiotics were defined as microbial strains that confer health benefits to their consumers. The concept has evolved during the last 20 years, and today metabolites produced by the strains, known as postbiotics, and even dead cells, known as paraprobiotics, are closely associated to them. The isolation of commensal strains from human microbiome has led to the development of next generation probiotics. This review aims to present an overview of the developments in the area of cancer prevention and treatment, intimately related to advances in the knowledge of the microbiome role in its genesis and therapy. Strain identification and characterization, production processes, delivery strategies, and clinical evaluation are crucial to translate results into the market with solid scientific support. Examples of recent tools in isolation, strain typification, quality control, and development of new probiotic strains are described. Probiotics market and regulation were originally developed in the food sector, but these new strategies will impact the pharmaceutical and health sectors, requiring new considerations in regulatory frameworks.


Sign in / Sign up

Export Citation Format

Share Document