scholarly journals Dynamic Topology Optimization of Long-Span Continuum Structures

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yingjia Wang ◽  
Dongchen Qin ◽  
Ranran Wang ◽  
Heming Zhao

Herein, to improve the dynamic performance of continuum structures, their fundamental frequency is optimized using the topology optimization method. This helps to obtain the best material distribution in the design space and increases the fundamental frequency of the structure higher than the disturbance frequency. Using the variable density method, the dynamic topology optimization model of a long-span continuum structure is built based on the density interpolation model of a solid isotropic material with penalization (SIMP). The goal of this optimization is to maximize the first-order eigenvalue, and the optimization constraint is that the total volume of the structure is smaller than the given value. To improve the efficiency and accuracy of the model, sensitivity filtering is adopted to avoid numerical instability during calculation. Moreover, the optimization criterion method is used to iteratively solve the optimization results. Finally, the structural topology optimization method is implemented on the long-span single beam of a bridge crane at a construction site. The results show that the natural frequency of the structure is increased and the modal characteristics are improved, which lays the foundation for further optimization and dynamic-response analysis.

Author(s):  
Akihiro Takezawa ◽  
Shinji Nishiwaki ◽  
Kazuhiro Izui ◽  
Masataka Yoshimura

This paper discuses a new topology optimization method using frame elements for the design of mechanical structures at the conceptual design phase. The optimal configurations are determined by maximizing multiple eigen-frequencies in order to obtain the most stable structures for dynamic problems. The optimization problem is formulated using frame elements having ellipsoidal cross-sections, as the simplest case. Construction of the optimization procedure is based on CONLIN and the complementary strain energy concept. Finally, several examples are presented to confirm that the proposed method is useful for the topology optimization method discussed here.


2020 ◽  
Vol 239 ◽  
pp. 106324 ◽  
Author(s):  
Lipeng Jiu ◽  
Weihong Zhang ◽  
Liang Meng ◽  
Ying Zhou ◽  
Liang Chen

2008 ◽  
Vol 131 (1) ◽  
Author(s):  
In Gwun Jang ◽  
Il Yong Kim ◽  
Byung Man Kwak

In bone-remodeling studies, it is believed that the morphology of bone is affected by its internal mechanical loads. From the 1970s, high computing power enabled quantitative studies in the simulation of bone remodeling or bone adaptation. Among them, Huiskes et al. (1987, “Adaptive Bone Remodeling Theory Applied to Prosthetic Design Analysis,” J. Biomech. Eng., 20, pp. 1135–1150) proposed a strain energy density based approach to bone remodeling and used the apparent density for the characterization of internal bone morphology. The fundamental idea was that bone density would increase when strain (or strain energy density) is higher than a certain value and bone resorption would occur when the strain (or strain energy density) quantities are lower than the threshold. Several advanced algorithms were developed based on these studies in an attempt to more accurately simulate physiological bone-remodeling processes. As another approach, topology optimization originally devised in structural optimization has been also used in the computational simulation of the bone-remodeling process. The topology optimization method systematically and iteratively distributes material in a design domain, determining an optimal structure that minimizes an objective function. In this paper, we compared two seemingly different approaches in different fields—the strain energy density based bone-remodeling algorithm (biomechanical approach) and the compliance based structural topology optimization method (mechanical approach)—in terms of mathematical formulations, numerical difficulties, and behavior of their numerical solutions. Two numerical case studies were conducted to demonstrate their similarity and difference, and then the solution convergences were discussed quantitatively.


2002 ◽  
Vol 2002.5 (0) ◽  
pp. 135-140
Author(s):  
Shinji Nishiwaki ◽  
Hidekazu Nishigaki ◽  
Yasuaki Tsurumi ◽  
Yoshio Kojima ◽  
Noboru Kikuchi ◽  
...  

2010 ◽  
Vol 455 ◽  
pp. 397-401
Author(s):  
S.G. Yao ◽  
Hang Li

Based on Topology optimization method of continuum the structural dynamic model has been built by constraint condition of volume and objective function of column natural frequency. In order to improve precision the dynamic characteristics of non-design region have been considered in optimization process. The column of structural optimization design has been done by applying topology optimization. The quality has not only reduced, but also the dynamic characteristic of the column has been improved. Thus the design effect has been reached.


2016 ◽  
Vol 856 ◽  
pp. 172-177
Author(s):  
Takeo Ishikawa ◽  
Shota Mizuno ◽  
Nobuyuki Kurita

The rotor geometry of a permanent magnet (PM) machine greatly affects the machine performance and therefore, it is very important to develop an initial conceptual structural topology of a PM rotor. We proposed an optimization method which is the combination of a topology optimization method and a method taking into account ease of manufacturing. This paper has manufactured an optimized rotor of a PM synchronous machine. Experimental results show that when operating as a generator, the designed machine has 46 % higher output voltage than that of a commercialized one. The efficiency of the designed machine is improved by about 2 % comparing with the commercialized machine. Therefore, it is experimentally confirmed that the optimized PM machine has a better performance than the commercialized one.


Sign in / Sign up

Export Citation Format

Share Document