Finite Element Analysis and Vibration Suppression Control of Smart Wind Turbine Blade

2011 ◽  
Vol 19 (3-4) ◽  
pp. 747-754 ◽  
Author(s):  
Yin-hu Qiao ◽  
Jiang Han ◽  
Chun-yan Zhang ◽  
Jie-ping Chen ◽  
Ke-chuan Yi
Author(s):  
Prenil Poulose ◽  
Zhong Hu

Strength evaluation and failure prediction on a modern composite wind turbine blade have been conducted using finite element analysis. A 3-dimensional finite element model has been developed. Stresses and deflections in the blade under extreme storm conditions have been investigated for different materials. The conventional wood design turbine blade has been compared with the advanced E-glass fiber and Carbon epoxy composite blades. Strength has been analyzed and compared for blades with different laminated layer stacking sequences and fiber orientations for a composite material. Safety design and failure prediction have been conducted based on the different failure criteria. The simulation error estimation has been evaluated. Simulation results have shown that finite element analysis is crucial for designing and optimizing composite wind turbine blades.


Author(s):  
Bo Zhou ◽  
Xin Wang ◽  
Changwei Zheng ◽  
Jinxiang Cao ◽  
Pingguo Zou

2019 ◽  
Vol 141 (5) ◽  
Author(s):  
M. Tarfaoui ◽  
O. R. Shah ◽  
M. Nachtane

In order to obtain an optimal design of composite offshore wind turbine blade, take into account all the structural properties and the limiting conditions applied as close as possible to real cases. This work is divided into two stages: the aerodynamic design and the structural design. The optimal blade structural configuration was determined through a parametric study by using a finite element method. The skin thickness, thickness and width of the spar flange, and thickness, location, and length of the front and rear spar web were varied until design criteria were satisfied. The purpose of this article is to provide the designer with all the tools required to model and optimize the blades. The aerodynamic performance has been covered in this study using blade element momentum (BEM) method to calculate the loads applied to the turbine blade during service and extreme stormy conditions, and the finite element analysis was performed by using abaqus code to predict the most critical damage behavior and to apprehend and obtain knowledge of the complex structural behavior of wind turbine blades. The approach developed based on the nonlinear finite element analysis using mean values for the material properties and the failure criteria of Hashin to predict failure modes in large structures and to identify the sensitive zones.


2011 ◽  
Vol 418-420 ◽  
pp. 606-609 ◽  
Author(s):  
Tian De ◽  
Guang Hua Chen ◽  
Jian Mei Zhang

Abstract: Base on finite element method of composite, take 5MW horizontal axis wind turbine blades as example, skin uses a mixture of fiberglass and carbon fiber as ply, spar caps and web adopt carbon fiber ply entirely to build the finite element model of the blade. The total weigh of the blade is 20.2 ton. Use Bladed software calculated the limit load of each cross-section, analyzed the stress distribution of each section and the modal characteristics of the blade, these provide a theoretical reference for the application of carbon fiber using on MW class wind turbine blade.


Sign in / Sign up

Export Citation Format

Share Document