scholarly journals Gerstenhaber Algebra Structure on the Hochschild Cohomology of Quadratic String Algebras

2017 ◽  
Vol 21 (1) ◽  
pp. 61-86 ◽  
Author(s):  
María Julia Redondo ◽  
Lucrecia Román
Author(s):  
Zhengfang Wang

Keller proved in 1999 that the Gerstenhaber algebra structure on the Hochschild cohomology of an algebra is an invariant of the derived category. In this paper, we adapt his approach to show that the Gerstenhaber algebra structure on the Tate–Hochschild cohomology of an algebra is preserved under singular equivalences of Morita type with level, a notion introduced by the author in previous work.


2020 ◽  
Vol 27 (04) ◽  
pp. 669-686
Author(s):  
Weiguo Lyu ◽  
Yuling Wu

We determine the Gerstenhaber algebra structure on the Hochschild cohomology ring of Temperley–Lieb algebras in this paper.


2019 ◽  
Vol 62 (3) ◽  
pp. 817-836 ◽  
Author(s):  
Yury Volkov

AbstractWe prove formulas of different types that allow us to calculate the Gerstenhaber bracket on the Hochschild cohomology of an algebra using some arbitrary projective bimodule resolution for it. Using one of these formulas, we give a new short proof of the derived invariance of the Gerstenhaber algebra structure on Hochschild cohomology. We also give some new formulas for the Connes differential on the Hochschild homology that lead to formulas for the Batalin–Vilkovisky (BV) differential on the Hochschild cohomology in the case of symmetric algebras. Finally, we use one of the obtained formulas to provide a full description of the BV structure and, correspondingly, the Gerstenhaber algebra structure on the Hochschild cohomology of a class of symmetric algebras.


Author(s):  
Viviana Gubitosi

In this paper, we compute the dimension of the Hochschild cohomology groups of any [Formula: see text]-cluster tilted algebra of type [Formula: see text]. Moreover, we give conditions on the bounded quiver of an [Formula: see text]-cluster tilted algebra [Formula: see text] of type [Formula: see text] such that the Gerstenhaber algebra [Formula: see text] has nontrivial multiplicative structures. We also show that the derived class of gentle [Formula: see text]-cluster tilted algebras is not always completely determined by the dimension of the Hochschild cohomology.


2012 ◽  
Vol 149 (3) ◽  
pp. 430-480 ◽  
Author(s):  
John Francis

AbstractIn this work, we study the deformation theory of${\mathcal {E}}_n$-rings and the${\mathcal {E}}_n$analogue of the tangent complex, or topological André–Quillen cohomology. We prove a generalization of a conjecture of Kontsevich, that there is a fiber sequence$A[n-1] \rightarrow T_A\rightarrow {\mathrm {HH}}^*_{{\mathcal {E}}_{n}}\!(A)[n]$, relating the${\mathcal {E}}_n$-tangent complex and${\mathcal {E}}_n$-Hochschild cohomology of an${\mathcal {E}}_n$-ring$A$. We give two proofs: the first is direct, reducing the problem to certain stable splittings of configuration spaces of punctured Euclidean spaces; the second is more conceptual, where we identify the sequence as the Lie algebras of a fiber sequence of derived algebraic groups,$B^{n-1}A^\times \rightarrow {\mathrm {Aut}}_A\rightarrow {\mathrm {Aut}}_{{\mathfrak B}^n\!A}$. Here${\mathfrak B}^n\!A$is an enriched$(\infty ,n)$-category constructed from$A$, and${\mathcal {E}}_n$-Hochschild cohomology is realized as the infinitesimal automorphisms of${\mathfrak B}^n\!A$. These groups are associated to moduli problems in${\mathcal {E}}_{n+1}$-geometry, a less commutative form of derived algebraic geometry, in the sense of the work of Toën and Vezzosi and the work of Lurie. Applying techniques of Koszul duality, this sequence consequently attains a nonunital${\mathcal {E}}_{n+1}$-algebra structure; in particular, the shifted tangent complex$T_A[-n]$is a nonunital${\mathcal {E}}_{n+1}$-algebra. The${\mathcal {E}}_{n+1}$-algebra structure of this sequence extends the previously known${\mathcal {E}}_{n+1}$-algebra structure on${\mathrm {HH}}^*_{{\mathcal {E}}_{n}}\!(A)$, given in the higher Deligne conjecture. In order to establish this moduli-theoretic interpretation, we make extensive use of factorization homology, a homology theory for framed$n$-manifolds with coefficients given by${\mathcal {E}}_n$-algebras, constructed as a topological analogue of Beilinson and Drinfeld’s chiral homology. We give a separate exposition of this theory, developing the necessary results used in our proofs.


Sign in / Sign up

Export Citation Format

Share Document