Multi-objective genetic algorithm for energy-efficient hybrid flow shop scheduling with lot streaming

2018 ◽  
Vol 290 (1-2) ◽  
pp. 813-836 ◽  
Author(s):  
Tzu-Li Chen ◽  
Chen-Yang Cheng ◽  
Yi-Han Chou
2021 ◽  
pp. 1-13
Author(s):  
Orhan Engin ◽  
Mustafa Kerim Yılmaz

In the conventional scheduling problem, the parameters such as the processing time for each job and due dates are usually assumed to be known exactly, but in many real-world applications, these parameters may very dynamically due to human factors or operating faults. During the last decade, several works on scheduling problems have used a fuzzy approach including either uncertain or imprecise data. A fuzzy logic based tool for multi-objective Hybrid Flow-shop Scheduling with Multi-processor Tasks (HFSMT) problem is presented in this paper. In this study, HFSMT problems with a fuzzy processing time and a fuzzy due date are formulated, taking Oğuz and Ercan’s benchmark problems in the literature into account. Fuzzy HFSMT problems are formulated by three-objectives: the first is to maximize the minimum agreement index and the second is to maximize the average agreement index, and the third is to minimize the maximum fuzzy completion time. An efficient genetic algorithm(GA) is proposed to solve the formulated fuzzy HFSMT problems. The feasibility and effectiveness of the proposed method are demonstrated by comparing it with the simulated annealing (SA) algorithm in the literature.


Author(s):  
Jingcao Cai ◽  
Deming Lei

AbstractDistributed hybrid flow shop scheduling problem (DHFSP) has attracted some attention; however, DHFSP with uncertainty and energy-related element is seldom studied. In this paper, distributed energy-efficient hybrid flow shop scheduling problem (DEHFSP) with fuzzy processing time is considered and a cooperated shuffled frog-leaping algorithm (CSFLA) is presented to optimize fuzzy makespan, total agreement index and fuzzy total energy consumption simultaneously. Iterated greedy, variable neighborhood search and global search are designed using problem-related features; memeplex evaluation based on three quality indices is presented, an effective cooperation process between the best memeplex and the worst memeplex is developed according to evaluation results and performed by exchanging search times and search ability, and an adaptive population shuffling is adopted to improve search efficiency. Extensive experiments are conducted and the computational results validate that CSFLA has promising advantages on solving the considered DEHFSP.


2021 ◽  
Vol 162 ◽  
pp. 107683
Author(s):  
Xiaoyuan Lian ◽  
Zhong Zheng ◽  
Cheng Wang ◽  
Xiaoqiang Gao

2015 ◽  
Vol 766-767 ◽  
pp. 962-967
Author(s):  
M. Saravanan ◽  
S. Sridhar ◽  
N. Harikannan

The two-stage Hybrid flow shop (HFS) scheduling is characterized n jobs m machines with two-stages in series. The essential complexities of the problem need to solve the hybrid flow shop scheduling using meta-heuristics. The paper addresses two-stage hybrid flow shop scheduling problems to minimize the makespan time with the batch size of 100 using Genetic Algorithm (GA) and Simulated Annealing algorithm (SA). The computational results observed that the GA algorithm is finding out good quality solutions than SA with lesser computational time.


Sign in / Sign up

Export Citation Format

Share Document