An improved hybrid multi-objective parallel genetic algorithm for hybrid flow shop scheduling with unrelated parallel machines

2010 ◽  
Vol 49 (9-12) ◽  
pp. 1129-1139 ◽  
Author(s):  
E. Rashidi ◽  
M. Jahandar ◽  
M. Zandieh
2021 ◽  
pp. 1-13
Author(s):  
Orhan Engin ◽  
Mustafa Kerim Yılmaz

In the conventional scheduling problem, the parameters such as the processing time for each job and due dates are usually assumed to be known exactly, but in many real-world applications, these parameters may very dynamically due to human factors or operating faults. During the last decade, several works on scheduling problems have used a fuzzy approach including either uncertain or imprecise data. A fuzzy logic based tool for multi-objective Hybrid Flow-shop Scheduling with Multi-processor Tasks (HFSMT) problem is presented in this paper. In this study, HFSMT problems with a fuzzy processing time and a fuzzy due date are formulated, taking Oğuz and Ercan’s benchmark problems in the literature into account. Fuzzy HFSMT problems are formulated by three-objectives: the first is to maximize the minimum agreement index and the second is to maximize the average agreement index, and the third is to minimize the maximum fuzzy completion time. An efficient genetic algorithm(GA) is proposed to solve the formulated fuzzy HFSMT problems. The feasibility and effectiveness of the proposed method are demonstrated by comparing it with the simulated annealing (SA) algorithm in the literature.


2013 ◽  
Vol 651 ◽  
pp. 548-552
Author(s):  
Parinya Kaweegitbundit

This paper considers two stage hybrid flow shop (HFS) with identical parallel machine. The objectives is to determine makespan have been minimized. This paper presented memetic algorithm procedure to solve two stage HFS problems. To evaluated performance of propose method, the results have been compared with two meta-heuristic, genetic algorithm, simulated annealing. The experimental results show that propose method is more effective and efficient than genetic algorithm and simulated annealing to solve two stage HFS scheduling problems.


Sign in / Sign up

Export Citation Format

Share Document