A new approach to deal with variable selection in neural networks: an application to bankruptcy prediction

Author(s):  
Ilyes Abid ◽  
Rim Ayadi ◽  
Khaled Guesmi ◽  
Farid Mkaouar
2012 ◽  
Vol 3 (2) ◽  
pp. 48-50
Author(s):  
Ana Isabel Velasco Fernández ◽  
◽  
Ricardo José Rejas Muslera ◽  
Juan Padilla Fernández-Vega ◽  
María Isabel Cepeda González

2019 ◽  
Vol 7 (1) ◽  
pp. 1597956
Author(s):  
Carlos Valencia ◽  
Sergio Cabrales ◽  
Laura Garcia ◽  
Juan Ramirez ◽  
Diego Calderona ◽  
...  

2018 ◽  
Author(s):  
Gao Wang ◽  
Abhishek Sarkar ◽  
Peter Carbonetto ◽  
Matthew Stephens

We introduce a simple new approach to variable selection in linear regression, with a particular focus on quantifying uncertainty in which variables should be selected. The approach is based on a new model — the “Sum of Single Effects” (SuSiE) model — which comes from writing the sparse vector of regression coefficients as a sum of “single-effect” vectors, each with one non-zero element. We also introduce a corresponding new fitting procedure — Iterative Bayesian Stepwise Selection (IBSS) — which is a Bayesian analogue of stepwise selection methods. IBSS shares the computational simplicity and speed of traditional stepwise methods, but instead of selecting a single variable at each step, IBSS computes a distribution on variables that captures uncertainty in which variable to select. We provide a formal justification of this intuitive algorithm by showing that it optimizes a variational approximation to the posterior distribution under the SuSiE model. Further, this approximate posterior distribution naturally yields convenient novel summaries of uncertainty in variable selection, providing a Credible Set of variables for each selection. Our methods are particularly well-suited to settings where variables are highly correlated and detectable effects are sparse, both of which are characteristics of genetic fine-mapping applications. We demonstrate through numerical experiments that our methods outper-form existing methods for this task, and illustrate their application to fine-mapping genetic variants influencing alternative splicing in human cell-lines. We also discuss the potential and challenges for applying these methods to generic variable selection problems.


Sign in / Sign up

Export Citation Format

Share Document