Bankruptcy Prediction Models: A Bet on Artificial Neural Networks

2012 ◽  
Vol 3 (2) ◽  
pp. 48-50
Author(s):  
Ana Isabel Velasco Fernández ◽  
◽  
Ricardo José Rejas Muslera ◽  
Juan Padilla Fernández-Vega ◽  
María Isabel Cepeda González
Author(s):  
Easwaran Iyer ◽  
Vinod Kumar Murti

Logistic Regression is one of the popular techniques used for bankruptcy prediction and its popularity is attributed due to its robust nature in terms of data characteristics. Recent developments have explored Artificial Neural Networks for bankruptcy prediction. In this study, a paired sample of 174 cases of Indian listed manufacturing companies have been used for building bankruptcy prediction models based on Logistic Regression and Artificial Neural Networks. The time period of study was year 2000 through year 2009. The classification accuracies have been compared for built models and for hold-out sample of 44 paired cases. In analysis and hold-out samples, both the models have shown appreciable classification results, three years prior to bankruptcy. Thus, both the models can be used (by banks, SEBI etc.) for bankruptcy prediction in Indian Context, however, Artificial Neural Network has shown marginal supremacy over Logistic Regression.


2020 ◽  
Vol 13 (3) ◽  
pp. 60 ◽  
Author(s):  
Jakub Horak ◽  
Jaromir Vrbka ◽  
Petr Suler

Bankruptcy prediction is always a topical issue. The activities of all business entities are directly or indirectly affected by various external and internal factors that may influence a company in insolvency and lead to bankruptcy. It is important to find a suitable tool to assess the future development of any company in the market. The objective of this paper is to create a model for predicting potential bankruptcy of companies using suitable classification methods, namely Support Vector Machine and artificial neural networks, and to evaluate the results of the methods used. The data (balance sheets and profit and loss accounts) of industrial companies operating in the Czech Republic for the last 5 marketing years were used. For the application of classification methods, TIBCO’s Statistica software, version 13, is used. In total, 6 models were created and subsequently compared with each other, while the most successful one applicable in practice is the model determined by the neural structure 2.MLP 22-9-2. The model of Support Vector Machine shows a relatively high accuracy, but it is not applicable in the structure of correct classifications.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2332
Author(s):  
Cecilia Martinez-Castillo ◽  
Gonzalo Astray ◽  
Juan Carlos Mejuto

Different prediction models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to model the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best model was checked in two independent stations. The results obtained confirmed that the best methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 1226 kJ/(m2∙day) and 1136 kJ/(m2∙day), respectively, and predict conveniently for independent stations, 2013 kJ/(m2∙day) and 2094 kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation.


2003 ◽  
Vol 7 (5) ◽  
pp. 693-706 ◽  
Author(s):  
E. Gaume ◽  
R. Gosset

Abstract. Recently Feed-Forward Artificial Neural Networks (FNN) have been gaining popularity for stream flow forecasting. However, despite the promising results presented in recent papers, their use is questionable. In theory, their “universal approximator‿ property guarantees that, if a sufficient number of neurons is selected, good performance of the models for interpolation purposes can be achieved. But the choice of a more complex model does not ensure a better prediction. Models with many parameters have a high capacity to fit the noise and the particularities of the calibration dataset, at the cost of diminishing their generalisation capacity. In support of the principle of model parsimony, a model selection method based on the validation performance of the models, "traditionally" used in the context of conceptual rainfall-runoff modelling, was adapted to the choice of a FFN structure. This method was applied to two different case studies: river flow prediction based on knowledge of upstream flows, and rainfall-runoff modelling. The predictive powers of the neural networks selected are compared to the results obtained with a linear model and a conceptual model (GR4j). In both case studies, the method leads to the selection of neural network structures with a limited number of neurons in the hidden layer (two or three). Moreover, the validation results of the selected FNN and of the linear model are very close. The conceptual model, specifically dedicated to rainfall-runoff modelling, appears to outperform the other two approaches. These conclusions, drawn on specific case studies using a particular evaluation method, add to the debate on the usefulness of Artificial Neural Networks in hydrology. Keywords: forecasting; stream-flow; rainfall-runoff; Artificial Neural Networks


Author(s):  
Sankhanil Goswami

Abstract Modern buildings account for a significant proportion of global energy consumption worldwide. Therefore, accurate energy use forecast is necessary for energy management and conservation. With the advent of smart sensors, a large amount of accurate energy data is available. Also, with the advancements in data analytics and machine learning, there have been numerous studies on developing data-driven prediction models based on Artificial Neural Networks (ANNs). In this work a type of ANN called Large Short-Term Memory (LSTM) is used to predict the energy use and cooling load of an existing building. A university administrative building was chosen for its typical commercial environment. The network was trained with one year of data and was used to predict the energy consumption and cooling load of the following year. The mean absolute testing error for the energy consumption and the cooling load were 0.105 and 0.05. The percentage mean accuracy was found to be 92.8% and 96.1%. The process was applied to several other buildings in the university and similar results were obtained. This indicates the model can successfully predict the energy consumption and cooling load for the buildings studied. The further improvement and application of this technique for optimizing building performance are also explored.


2019 ◽  
Vol 11 (2) ◽  
pp. 533 ◽  
Author(s):  
Gniewko Niedbała

The aim of the work was to produce three independent, multi-criteria models for the prediction of winter rapeseed yield. Each of the models was constructed in such a way that the yield prediction can be carried out on three dates: April 15th, May 31st, and June 30th. For model building, artificial neural networks with multi-layer perceptron (MLP) topology were used, on the basis of meteorological data (temperature and precipitation) and information about mineral fertilisation. The data were collected from the years, 2008–2015, from 328 production fields located in Greater Poland, Poland. An assessment of the quality of forecasts produced based on neural models was verified by determination of forecast errors using RAE (relative approximation error), RMS (root mean square error), MAE (mean absolute error) error indicators, and MAPE (mean absolute percentage error). An important feature of the produced prediction models is the ability to realize the forecast in the current agrotechnical year on the basis of the current weather and fertiliser information. The lowest MAPE error values were obtained for the neural model WR15_04 (April 15th) based on the MLP network with structure 15:15-18-11-1:1, which reached 7.51%. Other models reached MAPE errors of 7.85% for model WR31_05 (May 31st) and 8.12% for model WR30_06 (June 30th). The performed sensitivity analysis gave information about the factors that have the greatest impact on winter rapeseed yields. The highest rank of 1 was obtained by two networks for the same independent variable in the form of the sum of precipitation within a period from September 1st to December 31st of the previous year. However, in model WR15_04, the highest rank obtained a feature in the form of a sum of molybdenum fertilization in the current year (MO_CY). The models of winter rapeseed yield produced in the work will be the basis for the construction of new forecasting tools, which may be an important element of precision agriculture and the main element of decision support systems.


2019 ◽  
Vol 821 ◽  
pp. 500-505
Author(s):  
Mohammad Fuad Aljarrah ◽  
Mohammad Ali Khasawneh ◽  
Aslam Ali Al-Omari ◽  
Mohammad Emad Alshorman

The major objective of this study is to investigate the possibility of using Artificial Neural Networks in creating prediction models capable of estimating Bending Beam Rheometer outputs; namely creep stiffness, and m-value based on test temperature, modifier content; in our case waste vegetable oil, and testing time interval. A feedforward backpropagation neural network with Bayesian Regulation training algorithm and an SSE performance function was implemented. It was found that the neural network model shows high predictive powers with training and testing performance of 99.8% and 99.2% respectively. Plots between laboratory obtained values and neural network predicted outputs were also considered, and a strong correlation between the two methods was concluded. Therefore, it was reasonable to state that using neural networks to build prediction models in order to find BBR test values is justified.


Author(s):  
Hamid Reza Niazkar ◽  
Majid Niazkar

Abstract Background Millions of people have been infected worldwide in the COVID-19 pandemic. In this study, we aim to propose fourteen prediction models based on artificial neural networks (ANN) to predict the COVID-19 outbreak for policy makers. Methods The ANN-based models were utilized to estimate the confirmed cases of COVID-19 in China, Japan, Singapore, Iran, Italy, South Africa and United States of America. These models exploit historical records of confirmed cases, while their main difference is the number of days that they assume to have impact on the estimation process. The COVID-19 data were divided into a train part and a test part. The former was used to train the ANN models, while the latter was utilized to compare the purposes. The data analysis shows not only significant fluctuations in the daily confirmed cases but also different ranges of total confirmed cases observed in the time interval considered. Results Based on the obtained results, the ANN-based model that takes into account the previous 14 days outperforms the other ones. This comparison reveals the importance of considering the maximum incubation period in predicting the COVID-19 outbreak. Comparing the ranges of determination coefficients indicates that the estimated results for Italy are the best one. Moreover, the predicted results for Iran achieved the ranges of [0.09, 0.15] and [0.21, 0.36] for the mean absolute relative errors and normalized root mean square errors, respectively, which were the best ranges obtained for these criteria among different countries. Conclusion Based on the achieved results, the ANN-based model that takes into account the previous fourteen days for prediction is suggested to predict daily confirmed cases, particularly in countries that have experienced the first peak of the COVID-19 outbreak. This study has not only proved the applicability of ANN-based model for prediction of the COVID-19 outbreak, but also showed that considering incubation period of SARS-COV-2 in prediction models may generate more accurate estimations.


2020 ◽  
Vol 39 (3) ◽  
pp. 942-952
Author(s):  
O.T. Badejo ◽  
O.T. Jegede ◽  
H.O. Kayode ◽  
O.O. Durodola ◽  
S.O. Akintoye

Water current modelling and prediction techniques along coastal inlets have attracted growing concern in recent years. This is largely so because water current component continues to be a major contributor to movement of sediments, tracers and pollutants, and to a whole range of offshore applications in engineering, environmental observations, exploration and oceanography. However, most research works are lacking adequate methods for developing precise prediction models along the commodore channel in Lagos State. This research work presents water current prediction using Artificial Neural Networks (ANNs). The Back Propagation (BP) technique with feed forward architecture and optimized training algorithm known as Levenbergq-Marquardt was used to develop a Neural Network Water Current Prediction model-(NNWLM) in a MATLAB programming environment. It was passed through model sensitivity analysis and afterwards tested with data from the Commodore channel (Lagos Lagoon). The result revealed prediction accuracy ranging from 0.012 to 0.045 in terms of Mean Square Error (MSE) and 0.80 to 0.83 in terms of correlation coefficient (R-value). With this high performance, the Neural network developed in this work can be used as a veritable tool for water current prediction along the Commodore channel and in extension a wide variety of coastal engineering and development, covering sediment management program: dredging, sand bypassing, beach-contingency plans, and protection of beaches vulnerable to storm erosion and monitoring and prediction of long-term water current variations in coastal inlets. Keywords: Artificial Neural Network, Commodore Channel, Coastal Inlet, Water Current, Back Propagation.


Sign in / Sign up

Export Citation Format

Share Document