A probabilistic seismic hazard map for the metropolitan France

2020 ◽  
Vol 18 (5) ◽  
pp. 1865-1898 ◽  
Author(s):  
Stéphane Drouet ◽  
Gabriele Ameri ◽  
Kristell Le Dortz ◽  
Ramon Secanell ◽  
Gloria Senfaute
2006 ◽  
Vol 6 (6) ◽  
pp. 881-887 ◽  
Author(s):  
S. D. Simeonova ◽  
D. E. Solakov ◽  
G. Leydecker ◽  
H. Busche ◽  
T. Schmitt ◽  
...  

Abstract. A seismic hazard map proposed as part of a new building code for Bulgaria is presented here on basis of the recommendations in EUROCODE 8. Seismic source zones within an area of about 200 km around Bulgaria were constructed considering seismicity, neotectonic and geological development. The most time consuming work was to establish a homogeneous earthquake catalogue out of different catalogues. The probabilistic seismic hazard assessment in terms of intensities is performed following Cornell (1968) with the program EQRISK (see McGuire, 1976), modified by us for use of intensities. To cope with the irregular isoseismals of the Vrancea intermediate depth earthquakes a special attenuation factor is introduced (Ardeleanu et al., 2005), using detailed macroseismic maps of three major earthquakes. The final seismic hazard is the combination of both contributions, of zones with crustal earthquakes and of the Vrancea intermediate depth earthquakes zone. Calculations are done for recurrence periods of 95, 475 and 10 000 years.


2016 ◽  
Vol 81 (2) ◽  
pp. 1003-1025 ◽  
Author(s):  
Hadi Ghasemi ◽  
Chris McKee ◽  
Mark Leonard ◽  
Phil Cummins ◽  
Mathew Moihoi ◽  
...  

2005 ◽  
Vol 5 (5) ◽  
pp. 679-684 ◽  
Author(s):  
L. Ardeleanu ◽  
G. Leydecker ◽  
K.-P. Bonjer ◽  
H. Busche ◽  
D. Kaiser ◽  
...  

Abstract. A seismic hazard map proposed as part of a new building code for Romania is presented here on basis of the recommendations in EUROCODE 8. Seismic source zones within an area of about 200 km around Romania were constructed considering seismicity, neotectonics and geological development. The probabilistic seismic hazard assessment in terms of intensities is performed following Cornell (1968) with the program EQRISK (see Mc Guire, 1976), modified by us for use of intensities. To cope with the irregular isoseismals of the Vrancea intermediate depth earthquakes a factor Ω is introduced to the attenuation law (Kövesligethy, 1907). Using detailed macroseismic maps of three earthquakes Ω is calculated by fitting the attenuation law to observed intensities, i.e. to local ground conditions. Strong local variation of Ω is avoided by a gridding of 0.5° in longitude and 0.25° in latitude. The contribution of the Vrancea intermediate depth zone to the seismic hazard at each grid point is computed with the corresponding representative Ω. A seismogenic depth of 120 km is assumed. The final seismic hazard is the combination of both contributions, of zones with crustal earthquakes and of the Vrancea intermediate depth earthquakes zone. Calculations are done for a recurrence period of 95, 475 and 10000 years. All maps show the dominating effects of the intermediate depth earthquakes in the Vrancea zone, also for the capital Bucharest.  


2020 ◽  
Vol 18 (9) ◽  
pp. 4543-4545
Author(s):  
Stéphane Drouet ◽  
Gabriele Ameri ◽  
Kristell Le Dortz ◽  
Ramon Secanell ◽  
Gloria Senfaute

1993 ◽  
Vol 9 (2) ◽  
pp. 165-195 ◽  
Author(s):  
Bernice K. Bender ◽  
David M. Perkins

The inputs to probabilistic seismic hazard studies (seismic source zones, earthquake rates, attenuation functions, etc.) are uncertain, being based on subjective judgments and interpretations of limited data. In the face of this uncertainty, we consider (a) how one might “reasonably” determine the ground-motion levels to show on a single probabilistic seismic hazard map, and (b) the extent to which uncertainty in the calculated levels can be meaningfully represented on such a map. If the “best guess” estimates of the earthquake rate, the Gutenberg-Richter b-value and the maximum magnitude for a single source zone are regarded as uncorrelated and the uncertainty in each parameter can be regarded as symmetric about the estimated value, then the probabilistic ground-motion levels calculated using these best estimates represent both most likely values and also approximate mean values.


Sign in / Sign up

Export Citation Format

Share Document