hazard map
Recently Published Documents


TOTAL DOCUMENTS

392
(FIVE YEARS 121)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tigistu Yisihak Ukumo ◽  
Adane Abebe ◽  
Tarun Kumar Lohani ◽  
Muluneh Legesse Edamo

Purpose The purpose of this paper is to prepare flood hazard map and show the extent of flood hazard under climate change scenarios in Woybo River catchment. The hydraulic model, Hydrologic Engineering Center - River Analysis System (HEC-RAS) was used to simulate the floods under future climate scenarios. The impact of climate changes on severity of flooding was evaluated for the mid-term (2041–2070) and long-term (2071–2100) with relative to a baseline period (1971–2000). Design/methodology/approach Future climate scenarios were constructed from the bias corrected outputs of five regional climate models and the inflow hydrographs for 10, 25, 50 and 100 years design floods were derived from the flow which generated from HEC-hydrological modeling system; that was an input for the HEC-RAS model to generate the flood hazard maps in the catchment. Findings The results of this research show that 25.68% of the study area can be classified as very high hazard class while 28.56% of the area is under high hazard. It was also found that 20.20% is under moderate hazard and about 25.56% is under low hazard class in future under high emission scenario. The projected area to be flooded in far future relative to the baseline period is 66.3 ha of land which accounts for 62.82% from the total area. This study suggested that agricultural/crop land located at the right side of the Woybo River near the flood plain would be affected more with the 25, 50 and 100 years design floods. Originality/value Multiple climate models were assessed properly and the ensemble mean was used to prepare flood hazard map using HEC-RAS modeling.


2022 ◽  
Vol 9 (2) ◽  
pp. 3281-3291
Author(s):  
Wahyu Wilopo ◽  
Doni Prakasa Eka Putra ◽  
Teuku Faisal Fathani ◽  
Slamet Widodo ◽  
Galeh Nur Indriatno Putra Pratama ◽  
...  

The presence of natural cavities in karst morphology may cause severe civil engineering and environmental management problems. Karst formations will limit the expansion of urbanization, especially infrastructure development in limestone areas. Geophysical methods, especially electrical resistivity tomography (ERT) techniques, are effective and efficient solutions to detect voids below the surface. This study aimed to develop a subsidence hazard map as basic information for infrastructure development. The identification was made by measuring electrical resistivity tomography on eight profiles in the infrastructure development plan. In addition, it was also supported by geological mapping, particularly the structural geology and types of rocks around the site. The research area consists of massive limestone, bedded limestone, and cavity limestone with generally north-south joints. The analysis of geological mapping data and electrical resistivity tomography measurements showed that the cavity limestone was identified with a north-south elongated pattern in line with the fracture pattern found on the surface at the research area. The surface lithology type, the geological structures density, and the subsurface lithology were used to develop a subsidence hazard map. This information is beneficial in determining the safe location of infrastructure development based on disaster risk mitigation.


2021 ◽  
Vol 13 (23) ◽  
pp. 4761
Author(s):  
Saeid Parsian ◽  
Meisam Amani ◽  
Armin Moghimi ◽  
Arsalan Ghorbanian ◽  
Sahel Mahdavi

Iran is among the driest countries in the world, where many natural hazards, such as floods, frequently occur. This study introduces a straightforward flood hazard assessment approach using remote sensing datasets and Geographic Information Systems (GIS) environment in an area located in the western part of Iran. Multiple GIS and remote sensing datasets, including Digital Elevation Model (DEM), slope, rainfall, distance from the main rivers, Topographic Wetness Index (TWI), Land Use/Land Cover (LULC) maps, soil type map, Normalized Difference Vegetation Index (NDVI), and erosion rate were initially produced. Then, all datasets were converted into fuzzy values using a linear fuzzy membership function. Subsequently, the Analytical Hierarchy Process (AHP) technique was applied to determine the weight of each dataset, and the relevant weight values were then multiplied to fuzzy values. Finally, all the processed parameters were integrated using a fuzzy analysis to produce the flood hazard map with five classes of susceptible zones. The bi-temporal Sentinel-1 Synthetic Aperture Radar (SAR) images, acquired before and on the day of the flood event, were used to evaluate the accuracy of the produced flood hazard map. The results indicated that 95.16% of the actual flooded areas were classified as very high and high flood hazard classes, demonstrating the high potential of this approach for flood hazard mapping.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Audrey Michaud-Dubuy ◽  
Guillaume Carazzo ◽  
Edouard Kaminski

AbstractMount Pelée (Martinique) is one of the most active volcanoes in the Lesser Antilles arc with more than 34 magmatic events in the last 24,000 years, including the deadliest eruption of the 20th century. The current volcanic hazard map used in the civil security plan puts the emphasis on the volcanic hazard close to the volcano. This map is however based on an incomplete eruptive history and does not take into account the variability of the expected source conditions (mass eruption rate, total erupted mass, and grain-size distribution) or the wind effect on ash dispersal. We propose here to refine the volcanic hazard map for tephra fallout by using the 2-D model of ash dispersal HAZMAP. We first simulate the maximum expected eruptive scenario at Mount Pelée (i.e., the P3 eruption) using a seasonal wind profile. Building upon the good agreement with field data, we compute probability maps based on this maximum expected scenario, which show that tephra fallout hazard could threaten not only areas close to the volcano but also the southern part of Martinique. We then use a comprehensive approach based on 16 eruptive scenarios that include new field constraints obtained in the recent years on the past Plinian eruptions of Mount Pelée volcano. Each eruptive scenario considers different values of total erupted mass and mass eruption rate, and is characterized by a given probability of occurrence estimated from the refined eruptive history of the volcano. The 1979-2019 meteorological ERA-5 database is used to further take into account the daily variability of winds. These new probability maps show that the area of probable total destruction is wider when considering the 16 scenarios compared to the maximum expected scenario. The southern part of Martinique, although less threatened than when considering the maximum expected scenario, would still be impacted both by tephra fallout and by its high dependence on the water and electrical network carried from the northern part of the island. Finally, we show that key infrastructures in Martinique (such as the international airport) have a non-negligible probability of being impacted by a future Plinian eruption of the Mount Pelée. These results provide strong arguments for and will support significant and timely reconceiving of the emergency procedures as the local authorities have now placed Mount Pelée volcano on alert level yellow (vigilance) based on increased seismicity and tremor-type signals.


2021 ◽  
Vol 884 (1) ◽  
pp. 012025
Author(s):  
Pattaramone Manawongcharoen ◽  
Thitirat Panbamrungkij

Abstract Flooding is one of the main disasters in Thailand and Mueang Sing Buri is among those areas hit. Located on the Chao Phraya River Basin, in the central region of Thailand, the area receives a large amount of runoff during monsoon seasons which causes frequent flood disasters. The aims of this research are to create a flood hazard map and to estimate the number of people that may need shelter after the occurrence of a flood, and to evaluate whether the shelter capacity is adequate in Mueang Sing Buri. To explore the potential locations of emergency shelters, the relevant information related to flooding was initially recorded, such as building detail, flood depth, elevation map, and flood risk map. The available space of each building varies by the characteristics of building types. The calculation of shelter capacity thus depends on characteristics of the buildings, accessibility, and percent of vacant area. The emergency shelter assessment benefits many sectors in the design of preparation plans for hazard management.


2021 ◽  
Vol 893 (1) ◽  
pp. 012018
Author(s):  
A M Setiawan ◽  
A A Syafrianno ◽  
R Rahmat ◽  
Supari

Abstract North Sulawesi is one of the Province in northern Indonesia with high spatial annual rainfall variations and influenced by global climate anomaly that can lead to extreme events and disaster occurrence, such as flood, landslide, drought, etc. The purpose of this study is to generate high-resolution meteorological hazard map based on long-term historical consecutive dry days (CDD) over the North Sulawesi region. CDD was calculated based on observed daily precipitation data from Indonesia Agency for Meteorology, Climatology, and Geophysics (BMKG) surface observation station network (CDDobs) and the daily-improved Climate Hazards group Infrared Precipitation with Stations (CHIRPS) version 2.0 (CDDCHIRPS) during 1981 – 2010 period. The Japanese 55-year Reanalysis (JRA-55) data obtained from iTacs (Interactive Tool for Analysis of the Climate System) with the same time scale period also used to explain physical – dynamical atmospheric properties related to drought hazard over this region. The Geostatistical approach using regression kriging method was applied as spatial interpolation technique to generate high resolution gridded (0.05° × 0.05°) drought hazard map. This method combines a regression of CDDobs as dependent variable (target variable) on CDDCHIRPS as predictors with kriging of the prediction residuals. The results show that most of the areas were categorized as medium drought hazard level with CDD values ranging from 80-100 days. Meanwhile, small islands around main Sulawesi island such as Sangihe and Karakelong island are dominated by low drought hazard levels with CDD values ranging from 50-60 days. The highest levels of drought hazard area are located in South Bolaang Mongondow Regency.


2021 ◽  
Vol 239 ◽  
pp. 109884
Author(s):  
Tu Nam Luong ◽  
Soojin Hwang ◽  
Namkyun Im

2021 ◽  
Vol 921 (1) ◽  
pp. 012023
Author(s):  
S Anastasia ◽  
I Alimuddin ◽  
F Arifin

Abstract In urban development, land suitability assessment is very important to be considered by urban planners and policymakers for designing urban spatial planning. Assessment of the suitability of urban planning using a multi-hazard map is made to provide an overview of potential natural hazards that pose a threat to regional development so that the government can avoid urban development in areas prone to natural hazards or implementing urban development based on disaster mitigation. The research area is Mamuju Regency which is the capital city of West Sulawesi province which is an area that has frequently suffered damages due to floods, landslides, and earthquakes. The main scope of this research is to synthesize natural hazard maps in one multi-hazard map and thus identify suitable areas for urban development using the Analytical Hierarchy Process (AHP) method and utilize Geographical Information Systems (GIS). The results showed that the Mamuju area was mostly at moderate to high suitability.


2021 ◽  
Vol 21 (8) ◽  
pp. 2355-2377
Author(s):  
Magdalena Oryaëlle Chevrel ◽  
Massimiliano Favalli ◽  
Nicolas Villeneuve ◽  
Andrew J. L. Harris ◽  
Alessandro Fornaciai ◽  
...  

Abstract. Piton de la Fournaise, situated on La Réunion island (France), is one of the most active hot spot basaltic shield volcanoes worldwide, experiencing at least two eruptions per year since the establishment of the volcanological observatory in 1979. Eruptions are typically fissure-fed and form extensive lava flow fields. About 95 % of some ∼ 250 historical events (since the first confidently dated eruption in 1708) have occurred inside an uninhabited horseshoe-shaped caldera (hereafter referred to as the Enclos), which is open to the ocean on its eastern side. Rarely (12 times since the 18th century), fissures have opened outside of the Enclos, where housing units, population centers, and infrastructure are at risk. In such a situation, lava flow hazard maps are a useful way of visualizing lava flow inundation probabilities over large areas. Here, we present the up-to-date lava flow hazard map for Piton de la Fournaise based on (i) vent distribution, (ii) lava flow recurrence times, (iii) statistics of lava flow lengths, and (iv) simulations of lava flow paths using the DOWNFLOW stochastic numerical model. The map of the entire volcano highlights the spatial distribution probability of future lava flow invasion for the medium to long term (years to decades). It shows that the most probable location for future lava flow is within the Enclos (where there are areas with up to 12 % probability), a location visited by more than 100 000 visitors every year. Outside of the Enclos, probabilities reach 0.5 % along the active rift zones. Although lava flow hazard occurrence in inhabited areas is deemed to be very low (< 0.1 %), it may be underestimated as our study is only based on post-18th century records and neglects older events. We also provide a series of lava flow hazard maps inside the Enclos, computed on a multi-temporal (i.e., regularly updated) topography. Although hazard distribution remains broadly the same over time, some changes are noticed throughout the analyzed periods due to improved digital elevation model (DEM) resolution, the high frequency of eruptions that constantly modifies the topography, and the lava flow dimensional characteristics and paths. The lava flow hazard map for Piton de la Fournaise presented here is reliable and trustworthy for long-term hazard assessment and land use planning and management. Specific hazard maps for short-term hazard assessment (e.g., for responding to volcanic crises) or considering the cycles of activity at the volcano and different event scenarios (i.e., events fed by different combinations of temporally evolving superficial and deep sources) are required for further assessment of affected areas in the future – especially by atypical but potentially extremely hazardous large-volume eruptions. At such an active site, our method supports the need for regular updates of DEMs and associated lava flow hazard maps if we are to be effective in keeping up to date with mitigation of the associated risks.


Sign in / Sign up

Export Citation Format

Share Document