scholarly journals An algorithm for continuous piecewise linear bounding of discrete time series data

2014 ◽  
Vol 54 (4) ◽  
pp. 1155-1169 ◽  
Author(s):  
Andrew Skelton ◽  
Allan R. Willms
Biosystems ◽  
2008 ◽  
Vol 93 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Markus Durzinsky ◽  
Annegret Wagler ◽  
Robert Weismantel ◽  
Wolfgang Marwan

Author(s):  
Takaaki Maehara ◽  
Mikio Nakai

This study employs topological methods to extract unstable fixed points in phase space from both numerical and experimental time series data. Conley index of an isolated invariant subset and the R-B method can determine unstable fixed points contained in strange attractor from numerical time series data. For experimental time series data, the theorem for the relationship between index pairs and Conley index enables one to predict them with acceptable accuracy. As a corollary, some results for Duffing oscillator and piecewise linear system are shown.


2008 ◽  
Vol 5 (25) ◽  
pp. 885-897 ◽  
Author(s):  
Simon Cauchemez ◽  
Neil M Ferguson

We present a new statistical approach to analyse epidemic time-series data. A major difficulty for inference is that (i) the latent transmission process is partially observed and (ii) observed quantities are further aggregated temporally. We develop a data augmentation strategy to tackle these problems and introduce a diffusion process that mimicks the susceptible–infectious–removed (SIR) epidemic process, but that is more tractable analytically. While methods based on discrete-time models require epidemic and data collection processes to have similar time scales, our approach, based on a continuous-time model, is free of such constraint. Using simulated data, we found that all parameters of the SIR model, including the generation time, were estimated accurately if the observation interval was less than 2.5 times the generation time of the disease. Previous discrete-time TSIR models have been unable to estimate generation times, given that they assume the generation time is equal to the observation interval. However, we were unable to estimate the generation time of measles accurately from historical data. This indicates that simple models assuming homogenous mixing (even with age structure) of the type which are standard in mathematical epidemiology miss key features of epidemics in large populations.


Sign in / Sign up

Export Citation Format

Share Document